Characteristic Function of Gamma Distributed Random Variables












2












$begingroup$


I have the following characteristic function
$$sum_{m=0}^{infty} frac{(is)^m}{m!} sigma_{m,k} frac{Gamma(beta + m)}{Gamma(beta)},$$
where $i$ is the imaginary unit, $beta>0$, $Gamma(cdot)$ is the Gamma function and
$$sigma_{m,k} equiv frac{Gamma(beta+alpha)Gamma(beta+k)}{Gamma(beta + m)Gamma(beta + alpha + k)},$$
where $k$ can be any non-negative integer and $alpha > 0$ is another parameter. If there exists a $sigma_k > 0$ (a positive constant that does not depend on $m$, but can depend on $k$), such that
$$(star) qquad qquad sum_{m=0}^{infty} frac{(is)^m}{m!} sigma_{m,k} frac{Gamma(beta + m)}{Gamma(beta)} = sum_{m=0}^{infty} frac{(is)^m}{m!} sigma_{k}^m frac{Gamma(beta + m)}{Gamma(beta)}$$
then I know that the left hand side is the characteristic function of a Gamma distributed random variable with shape parameter $beta$ and scale parameter $sigma_k$, since the right hand-side is.



My Question: is it possible to show that there exists a $sigma_k$ so that $(star)$ is true? Is there some form of intermediate value theorem that I can appeal to here? Note that the sequence $sigma_{0,k}, sigma_{1,k}, ...$ is a decreasing sequence.










share|cite|improve this question











$endgroup$

















    2












    $begingroup$


    I have the following characteristic function
    $$sum_{m=0}^{infty} frac{(is)^m}{m!} sigma_{m,k} frac{Gamma(beta + m)}{Gamma(beta)},$$
    where $i$ is the imaginary unit, $beta>0$, $Gamma(cdot)$ is the Gamma function and
    $$sigma_{m,k} equiv frac{Gamma(beta+alpha)Gamma(beta+k)}{Gamma(beta + m)Gamma(beta + alpha + k)},$$
    where $k$ can be any non-negative integer and $alpha > 0$ is another parameter. If there exists a $sigma_k > 0$ (a positive constant that does not depend on $m$, but can depend on $k$), such that
    $$(star) qquad qquad sum_{m=0}^{infty} frac{(is)^m}{m!} sigma_{m,k} frac{Gamma(beta + m)}{Gamma(beta)} = sum_{m=0}^{infty} frac{(is)^m}{m!} sigma_{k}^m frac{Gamma(beta + m)}{Gamma(beta)}$$
    then I know that the left hand side is the characteristic function of a Gamma distributed random variable with shape parameter $beta$ and scale parameter $sigma_k$, since the right hand-side is.



    My Question: is it possible to show that there exists a $sigma_k$ so that $(star)$ is true? Is there some form of intermediate value theorem that I can appeal to here? Note that the sequence $sigma_{0,k}, sigma_{1,k}, ...$ is a decreasing sequence.










    share|cite|improve this question











    $endgroup$















      2












      2








      2





      $begingroup$


      I have the following characteristic function
      $$sum_{m=0}^{infty} frac{(is)^m}{m!} sigma_{m,k} frac{Gamma(beta + m)}{Gamma(beta)},$$
      where $i$ is the imaginary unit, $beta>0$, $Gamma(cdot)$ is the Gamma function and
      $$sigma_{m,k} equiv frac{Gamma(beta+alpha)Gamma(beta+k)}{Gamma(beta + m)Gamma(beta + alpha + k)},$$
      where $k$ can be any non-negative integer and $alpha > 0$ is another parameter. If there exists a $sigma_k > 0$ (a positive constant that does not depend on $m$, but can depend on $k$), such that
      $$(star) qquad qquad sum_{m=0}^{infty} frac{(is)^m}{m!} sigma_{m,k} frac{Gamma(beta + m)}{Gamma(beta)} = sum_{m=0}^{infty} frac{(is)^m}{m!} sigma_{k}^m frac{Gamma(beta + m)}{Gamma(beta)}$$
      then I know that the left hand side is the characteristic function of a Gamma distributed random variable with shape parameter $beta$ and scale parameter $sigma_k$, since the right hand-side is.



      My Question: is it possible to show that there exists a $sigma_k$ so that $(star)$ is true? Is there some form of intermediate value theorem that I can appeal to here? Note that the sequence $sigma_{0,k}, sigma_{1,k}, ...$ is a decreasing sequence.










      share|cite|improve this question











      $endgroup$




      I have the following characteristic function
      $$sum_{m=0}^{infty} frac{(is)^m}{m!} sigma_{m,k} frac{Gamma(beta + m)}{Gamma(beta)},$$
      where $i$ is the imaginary unit, $beta>0$, $Gamma(cdot)$ is the Gamma function and
      $$sigma_{m,k} equiv frac{Gamma(beta+alpha)Gamma(beta+k)}{Gamma(beta + m)Gamma(beta + alpha + k)},$$
      where $k$ can be any non-negative integer and $alpha > 0$ is another parameter. If there exists a $sigma_k > 0$ (a positive constant that does not depend on $m$, but can depend on $k$), such that
      $$(star) qquad qquad sum_{m=0}^{infty} frac{(is)^m}{m!} sigma_{m,k} frac{Gamma(beta + m)}{Gamma(beta)} = sum_{m=0}^{infty} frac{(is)^m}{m!} sigma_{k}^m frac{Gamma(beta + m)}{Gamma(beta)}$$
      then I know that the left hand side is the characteristic function of a Gamma distributed random variable with shape parameter $beta$ and scale parameter $sigma_k$, since the right hand-side is.



      My Question: is it possible to show that there exists a $sigma_k$ so that $(star)$ is true? Is there some form of intermediate value theorem that I can appeal to here? Note that the sequence $sigma_{0,k}, sigma_{1,k}, ...$ is a decreasing sequence.







      characteristic-functions gamma-distribution






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 22 '18 at 13:22







      SEJ

















      asked Dec 22 '18 at 7:50









      SEJSEJ

      184




      184






















          0






          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3049204%2fcharacteristic-function-of-gamma-distributed-random-variables%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3049204%2fcharacteristic-function-of-gamma-distributed-random-variables%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Quarter-circle Tiles

          build a pushdown automaton that recognizes the reverse language of a given pushdown automaton?

          Mont Emei