Derivative of a function defined in terms of another function












0












$begingroup$


Let $F: mathbf{R^2} rightarrow mathbf{R}$ have continuous second order partial derivatives. Assume its gradient is $nabla f(0,0) = (1,2)$ and its Hessian matrix is
$$begin{pmatrix}
1 & 2 \
2 &4
end{pmatrix} = nabla ^2 f $$



Define $phi (t) = f(t, 2t)$. Find $phi ^ prime (0)$ and $phi ^ {prime prime} (0)$.



Any hints? I know how to do this when $f$ is explicitly defined, but not when just given the gradient/Hessian at a certain point.










share|cite|improve this question









$endgroup$

















    0












    $begingroup$


    Let $F: mathbf{R^2} rightarrow mathbf{R}$ have continuous second order partial derivatives. Assume its gradient is $nabla f(0,0) = (1,2)$ and its Hessian matrix is
    $$begin{pmatrix}
    1 & 2 \
    2 &4
    end{pmatrix} = nabla ^2 f $$



    Define $phi (t) = f(t, 2t)$. Find $phi ^ prime (0)$ and $phi ^ {prime prime} (0)$.



    Any hints? I know how to do this when $f$ is explicitly defined, but not when just given the gradient/Hessian at a certain point.










    share|cite|improve this question









    $endgroup$















      0












      0








      0





      $begingroup$


      Let $F: mathbf{R^2} rightarrow mathbf{R}$ have continuous second order partial derivatives. Assume its gradient is $nabla f(0,0) = (1,2)$ and its Hessian matrix is
      $$begin{pmatrix}
      1 & 2 \
      2 &4
      end{pmatrix} = nabla ^2 f $$



      Define $phi (t) = f(t, 2t)$. Find $phi ^ prime (0)$ and $phi ^ {prime prime} (0)$.



      Any hints? I know how to do this when $f$ is explicitly defined, but not when just given the gradient/Hessian at a certain point.










      share|cite|improve this question









      $endgroup$




      Let $F: mathbf{R^2} rightarrow mathbf{R}$ have continuous second order partial derivatives. Assume its gradient is $nabla f(0,0) = (1,2)$ and its Hessian matrix is
      $$begin{pmatrix}
      1 & 2 \
      2 &4
      end{pmatrix} = nabla ^2 f $$



      Define $phi (t) = f(t, 2t)$. Find $phi ^ prime (0)$ and $phi ^ {prime prime} (0)$.



      Any hints? I know how to do this when $f$ is explicitly defined, but not when just given the gradient/Hessian at a certain point.







      real-analysis






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Dec 17 '18 at 16:01









      hopelessundergradhopelessundergrad

      242




      242






















          1 Answer
          1






          active

          oldest

          votes


















          0












          $begingroup$

          Just aplpy chain rule, nota that $phi=fcirc h$, with $h:mathbb{R}to mathbb{R}^{2}$, $h(t)=(t,2t)$. Then



          begin{equation} phi '(t)=nabla f (h(t)) h'(t) hspace{3cm}(1)
          end{equation}

          then put $t=0$ (h' is a column vector, (1,2) as a column)



          $$ phi '(0)=nabla f (h(0))h'(0) $$



          $$ phi '(0)=nabla f (0,0)h'(0) $$



          $$ phi '(0)=(1,2)(1,2)^{T} $$



          $$ phi '(0)=1+4=5$$



          Then derive again in (1) (which can be writenn as $[(nabla fcirc h)(t)](1,2)^{T}$ to use the chain rule again ) to find $phi''$ taking into account that $h'(t)=(1,2)^{T}$ (constant):



          $$phi ''(t)=[nabla^{2} f (h(t))h'(t) ]left[{begin{array}{c}
          1 \
          2 \
          end{array} } right] $$



          so puting $t=0$, we have:



          $$phi ''(0)=[nabla^{2} f (h(0))h'(0)] left[ {begin{array}{c}
          1 \
          2 \
          end{array} } right] $$



          $$phi ''(0)=[nabla^{2} f (0,0) h'(0)] left[ {begin{array}{c}
          1 \
          2 \
          end{array} } right] $$



          $$phi ''(0)={ left[ {begin{array}{cc}
          1 & 2 \
          2 & 4 \
          end{array} } right] left[ {begin{array}{c}
          1 \
          2 \
          end{array} } right] } left[ {begin{array}{c}
          1 \
          2 \
          end{array} } right] $$



          $$phi ''(0)=left[ {begin{array}{c}
          5 \
          10 \
          end{array} } right] left[{begin{array}{c}
          1 \
          2 \
          end{array} } right] $$



          $$phi''(0)=25.$$






          share|cite|improve this answer











          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3044113%2fderivative-of-a-function-defined-in-terms-of-another-function%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            0












            $begingroup$

            Just aplpy chain rule, nota that $phi=fcirc h$, with $h:mathbb{R}to mathbb{R}^{2}$, $h(t)=(t,2t)$. Then



            begin{equation} phi '(t)=nabla f (h(t)) h'(t) hspace{3cm}(1)
            end{equation}

            then put $t=0$ (h' is a column vector, (1,2) as a column)



            $$ phi '(0)=nabla f (h(0))h'(0) $$



            $$ phi '(0)=nabla f (0,0)h'(0) $$



            $$ phi '(0)=(1,2)(1,2)^{T} $$



            $$ phi '(0)=1+4=5$$



            Then derive again in (1) (which can be writenn as $[(nabla fcirc h)(t)](1,2)^{T}$ to use the chain rule again ) to find $phi''$ taking into account that $h'(t)=(1,2)^{T}$ (constant):



            $$phi ''(t)=[nabla^{2} f (h(t))h'(t) ]left[{begin{array}{c}
            1 \
            2 \
            end{array} } right] $$



            so puting $t=0$, we have:



            $$phi ''(0)=[nabla^{2} f (h(0))h'(0)] left[ {begin{array}{c}
            1 \
            2 \
            end{array} } right] $$



            $$phi ''(0)=[nabla^{2} f (0,0) h'(0)] left[ {begin{array}{c}
            1 \
            2 \
            end{array} } right] $$



            $$phi ''(0)={ left[ {begin{array}{cc}
            1 & 2 \
            2 & 4 \
            end{array} } right] left[ {begin{array}{c}
            1 \
            2 \
            end{array} } right] } left[ {begin{array}{c}
            1 \
            2 \
            end{array} } right] $$



            $$phi ''(0)=left[ {begin{array}{c}
            5 \
            10 \
            end{array} } right] left[{begin{array}{c}
            1 \
            2 \
            end{array} } right] $$



            $$phi''(0)=25.$$






            share|cite|improve this answer











            $endgroup$


















              0












              $begingroup$

              Just aplpy chain rule, nota that $phi=fcirc h$, with $h:mathbb{R}to mathbb{R}^{2}$, $h(t)=(t,2t)$. Then



              begin{equation} phi '(t)=nabla f (h(t)) h'(t) hspace{3cm}(1)
              end{equation}

              then put $t=0$ (h' is a column vector, (1,2) as a column)



              $$ phi '(0)=nabla f (h(0))h'(0) $$



              $$ phi '(0)=nabla f (0,0)h'(0) $$



              $$ phi '(0)=(1,2)(1,2)^{T} $$



              $$ phi '(0)=1+4=5$$



              Then derive again in (1) (which can be writenn as $[(nabla fcirc h)(t)](1,2)^{T}$ to use the chain rule again ) to find $phi''$ taking into account that $h'(t)=(1,2)^{T}$ (constant):



              $$phi ''(t)=[nabla^{2} f (h(t))h'(t) ]left[{begin{array}{c}
              1 \
              2 \
              end{array} } right] $$



              so puting $t=0$, we have:



              $$phi ''(0)=[nabla^{2} f (h(0))h'(0)] left[ {begin{array}{c}
              1 \
              2 \
              end{array} } right] $$



              $$phi ''(0)=[nabla^{2} f (0,0) h'(0)] left[ {begin{array}{c}
              1 \
              2 \
              end{array} } right] $$



              $$phi ''(0)={ left[ {begin{array}{cc}
              1 & 2 \
              2 & 4 \
              end{array} } right] left[ {begin{array}{c}
              1 \
              2 \
              end{array} } right] } left[ {begin{array}{c}
              1 \
              2 \
              end{array} } right] $$



              $$phi ''(0)=left[ {begin{array}{c}
              5 \
              10 \
              end{array} } right] left[{begin{array}{c}
              1 \
              2 \
              end{array} } right] $$



              $$phi''(0)=25.$$






              share|cite|improve this answer











              $endgroup$
















                0












                0








                0





                $begingroup$

                Just aplpy chain rule, nota that $phi=fcirc h$, with $h:mathbb{R}to mathbb{R}^{2}$, $h(t)=(t,2t)$. Then



                begin{equation} phi '(t)=nabla f (h(t)) h'(t) hspace{3cm}(1)
                end{equation}

                then put $t=0$ (h' is a column vector, (1,2) as a column)



                $$ phi '(0)=nabla f (h(0))h'(0) $$



                $$ phi '(0)=nabla f (0,0)h'(0) $$



                $$ phi '(0)=(1,2)(1,2)^{T} $$



                $$ phi '(0)=1+4=5$$



                Then derive again in (1) (which can be writenn as $[(nabla fcirc h)(t)](1,2)^{T}$ to use the chain rule again ) to find $phi''$ taking into account that $h'(t)=(1,2)^{T}$ (constant):



                $$phi ''(t)=[nabla^{2} f (h(t))h'(t) ]left[{begin{array}{c}
                1 \
                2 \
                end{array} } right] $$



                so puting $t=0$, we have:



                $$phi ''(0)=[nabla^{2} f (h(0))h'(0)] left[ {begin{array}{c}
                1 \
                2 \
                end{array} } right] $$



                $$phi ''(0)=[nabla^{2} f (0,0) h'(0)] left[ {begin{array}{c}
                1 \
                2 \
                end{array} } right] $$



                $$phi ''(0)={ left[ {begin{array}{cc}
                1 & 2 \
                2 & 4 \
                end{array} } right] left[ {begin{array}{c}
                1 \
                2 \
                end{array} } right] } left[ {begin{array}{c}
                1 \
                2 \
                end{array} } right] $$



                $$phi ''(0)=left[ {begin{array}{c}
                5 \
                10 \
                end{array} } right] left[{begin{array}{c}
                1 \
                2 \
                end{array} } right] $$



                $$phi''(0)=25.$$






                share|cite|improve this answer











                $endgroup$



                Just aplpy chain rule, nota that $phi=fcirc h$, with $h:mathbb{R}to mathbb{R}^{2}$, $h(t)=(t,2t)$. Then



                begin{equation} phi '(t)=nabla f (h(t)) h'(t) hspace{3cm}(1)
                end{equation}

                then put $t=0$ (h' is a column vector, (1,2) as a column)



                $$ phi '(0)=nabla f (h(0))h'(0) $$



                $$ phi '(0)=nabla f (0,0)h'(0) $$



                $$ phi '(0)=(1,2)(1,2)^{T} $$



                $$ phi '(0)=1+4=5$$



                Then derive again in (1) (which can be writenn as $[(nabla fcirc h)(t)](1,2)^{T}$ to use the chain rule again ) to find $phi''$ taking into account that $h'(t)=(1,2)^{T}$ (constant):



                $$phi ''(t)=[nabla^{2} f (h(t))h'(t) ]left[{begin{array}{c}
                1 \
                2 \
                end{array} } right] $$



                so puting $t=0$, we have:



                $$phi ''(0)=[nabla^{2} f (h(0))h'(0)] left[ {begin{array}{c}
                1 \
                2 \
                end{array} } right] $$



                $$phi ''(0)=[nabla^{2} f (0,0) h'(0)] left[ {begin{array}{c}
                1 \
                2 \
                end{array} } right] $$



                $$phi ''(0)={ left[ {begin{array}{cc}
                1 & 2 \
                2 & 4 \
                end{array} } right] left[ {begin{array}{c}
                1 \
                2 \
                end{array} } right] } left[ {begin{array}{c}
                1 \
                2 \
                end{array} } right] $$



                $$phi ''(0)=left[ {begin{array}{c}
                5 \
                10 \
                end{array} } right] left[{begin{array}{c}
                1 \
                2 \
                end{array} } right] $$



                $$phi''(0)=25.$$







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited Dec 17 '18 at 22:36

























                answered Dec 17 '18 at 16:08









                Gabriel PalauGabriel Palau

                1106




                1106






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3044113%2fderivative-of-a-function-defined-in-terms-of-another-function%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Ellipse (mathématiques)

                    Quarter-circle Tiles

                    Mont Emei