Gelfand transformation of $l^p$












2












$begingroup$


I would like to describe Gelfand transofrmation of commutative Banach algebra $l^p(mathbb{N}),p in [1,infty)$ with multiplication define by $(a_n)_n(b_n)_n=(a_n b_n)_n$, but I have no idea, how to do it. Any hints ? Thanks










share|cite|improve this question











$endgroup$












  • $begingroup$
    It doesn't seem like $l^p$ is closed under your multiplication operation.
    $endgroup$
    – Daniel Schepler
    Dec 18 '18 at 0:05










  • $begingroup$
    @DanielSchepler It is closed - we consider space $l^p$, not $L^p$.
    $endgroup$
    – lojdmoj
    Dec 30 '18 at 2:20


















2












$begingroup$


I would like to describe Gelfand transofrmation of commutative Banach algebra $l^p(mathbb{N}),p in [1,infty)$ with multiplication define by $(a_n)_n(b_n)_n=(a_n b_n)_n$, but I have no idea, how to do it. Any hints ? Thanks










share|cite|improve this question











$endgroup$












  • $begingroup$
    It doesn't seem like $l^p$ is closed under your multiplication operation.
    $endgroup$
    – Daniel Schepler
    Dec 18 '18 at 0:05










  • $begingroup$
    @DanielSchepler It is closed - we consider space $l^p$, not $L^p$.
    $endgroup$
    – lojdmoj
    Dec 30 '18 at 2:20
















2












2








2





$begingroup$


I would like to describe Gelfand transofrmation of commutative Banach algebra $l^p(mathbb{N}),p in [1,infty)$ with multiplication define by $(a_n)_n(b_n)_n=(a_n b_n)_n$, but I have no idea, how to do it. Any hints ? Thanks










share|cite|improve this question











$endgroup$




I would like to describe Gelfand transofrmation of commutative Banach algebra $l^p(mathbb{N}),p in [1,infty)$ with multiplication define by $(a_n)_n(b_n)_n=(a_n b_n)_n$, but I have no idea, how to do it. Any hints ? Thanks







lp-spaces banach-algebras gelfand-representation






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 20 '18 at 0:36







lojdmoj

















asked Dec 17 '18 at 15:56









lojdmojlojdmoj

877




877












  • $begingroup$
    It doesn't seem like $l^p$ is closed under your multiplication operation.
    $endgroup$
    – Daniel Schepler
    Dec 18 '18 at 0:05










  • $begingroup$
    @DanielSchepler It is closed - we consider space $l^p$, not $L^p$.
    $endgroup$
    – lojdmoj
    Dec 30 '18 at 2:20




















  • $begingroup$
    It doesn't seem like $l^p$ is closed under your multiplication operation.
    $endgroup$
    – Daniel Schepler
    Dec 18 '18 at 0:05










  • $begingroup$
    @DanielSchepler It is closed - we consider space $l^p$, not $L^p$.
    $endgroup$
    – lojdmoj
    Dec 30 '18 at 2:20


















$begingroup$
It doesn't seem like $l^p$ is closed under your multiplication operation.
$endgroup$
– Daniel Schepler
Dec 18 '18 at 0:05




$begingroup$
It doesn't seem like $l^p$ is closed under your multiplication operation.
$endgroup$
– Daniel Schepler
Dec 18 '18 at 0:05












$begingroup$
@DanielSchepler It is closed - we consider space $l^p$, not $L^p$.
$endgroup$
– lojdmoj
Dec 30 '18 at 2:20






$begingroup$
@DanielSchepler It is closed - we consider space $l^p$, not $L^p$.
$endgroup$
– lojdmoj
Dec 30 '18 at 2:20












1 Answer
1






active

oldest

votes


















0












$begingroup$

The Gelfand transform in this case is nothing but the inclusion map $ell_pto c_0$ because the point-evaluations are the only non-zero characters on $ell_p$.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    we know, that $Delta (l^p)={e_n:nin mathbb{N}}$ so then GT of $e_n$ is projection to n-th coordinate of $xin l^p$ ...$widehat{x}(n)=x_n$
    $endgroup$
    – lojdmoj
    Jan 4 at 20:09












  • $begingroup$
    the question is if there exist any other element of $Delta(l^p)$
    $endgroup$
    – lojdmoj
    Jan 4 at 20:13










  • $begingroup$
    @lojdmoj, certainly not. Suppose that $f$ is a non-zero character. Then $f(e_n) = f(e_n)^2 in {0,1}$. If $f(e_n) = 1 = f(e_m)$ and $nneq m$, then $2 = f(e_n + e_m) = f(e_n + e_m)^2$ because $e_n+e_m$ is an idempotent; a contradiction. Thus $f$ is a point-evaluation.
    $endgroup$
    – Tomek Kania
    Jan 4 at 20:29












  • $begingroup$
    Many thanks for your help :)
    $endgroup$
    – lojdmoj
    Jan 4 at 20:39






  • 1




    $begingroup$
    @lojdmoj, but $f$ is linear...
    $endgroup$
    – Tomek Kania
    Jan 4 at 22:35











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3044111%2fgelfand-transformation-of-lp%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









0












$begingroup$

The Gelfand transform in this case is nothing but the inclusion map $ell_pto c_0$ because the point-evaluations are the only non-zero characters on $ell_p$.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    we know, that $Delta (l^p)={e_n:nin mathbb{N}}$ so then GT of $e_n$ is projection to n-th coordinate of $xin l^p$ ...$widehat{x}(n)=x_n$
    $endgroup$
    – lojdmoj
    Jan 4 at 20:09












  • $begingroup$
    the question is if there exist any other element of $Delta(l^p)$
    $endgroup$
    – lojdmoj
    Jan 4 at 20:13










  • $begingroup$
    @lojdmoj, certainly not. Suppose that $f$ is a non-zero character. Then $f(e_n) = f(e_n)^2 in {0,1}$. If $f(e_n) = 1 = f(e_m)$ and $nneq m$, then $2 = f(e_n + e_m) = f(e_n + e_m)^2$ because $e_n+e_m$ is an idempotent; a contradiction. Thus $f$ is a point-evaluation.
    $endgroup$
    – Tomek Kania
    Jan 4 at 20:29












  • $begingroup$
    Many thanks for your help :)
    $endgroup$
    – lojdmoj
    Jan 4 at 20:39






  • 1




    $begingroup$
    @lojdmoj, but $f$ is linear...
    $endgroup$
    – Tomek Kania
    Jan 4 at 22:35
















0












$begingroup$

The Gelfand transform in this case is nothing but the inclusion map $ell_pto c_0$ because the point-evaluations are the only non-zero characters on $ell_p$.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    we know, that $Delta (l^p)={e_n:nin mathbb{N}}$ so then GT of $e_n$ is projection to n-th coordinate of $xin l^p$ ...$widehat{x}(n)=x_n$
    $endgroup$
    – lojdmoj
    Jan 4 at 20:09












  • $begingroup$
    the question is if there exist any other element of $Delta(l^p)$
    $endgroup$
    – lojdmoj
    Jan 4 at 20:13










  • $begingroup$
    @lojdmoj, certainly not. Suppose that $f$ is a non-zero character. Then $f(e_n) = f(e_n)^2 in {0,1}$. If $f(e_n) = 1 = f(e_m)$ and $nneq m$, then $2 = f(e_n + e_m) = f(e_n + e_m)^2$ because $e_n+e_m$ is an idempotent; a contradiction. Thus $f$ is a point-evaluation.
    $endgroup$
    – Tomek Kania
    Jan 4 at 20:29












  • $begingroup$
    Many thanks for your help :)
    $endgroup$
    – lojdmoj
    Jan 4 at 20:39






  • 1




    $begingroup$
    @lojdmoj, but $f$ is linear...
    $endgroup$
    – Tomek Kania
    Jan 4 at 22:35














0












0








0





$begingroup$

The Gelfand transform in this case is nothing but the inclusion map $ell_pto c_0$ because the point-evaluations are the only non-zero characters on $ell_p$.






share|cite|improve this answer









$endgroup$



The Gelfand transform in this case is nothing but the inclusion map $ell_pto c_0$ because the point-evaluations are the only non-zero characters on $ell_p$.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Jan 4 at 19:37









Tomek KaniaTomek Kania

12.2k11945




12.2k11945












  • $begingroup$
    we know, that $Delta (l^p)={e_n:nin mathbb{N}}$ so then GT of $e_n$ is projection to n-th coordinate of $xin l^p$ ...$widehat{x}(n)=x_n$
    $endgroup$
    – lojdmoj
    Jan 4 at 20:09












  • $begingroup$
    the question is if there exist any other element of $Delta(l^p)$
    $endgroup$
    – lojdmoj
    Jan 4 at 20:13










  • $begingroup$
    @lojdmoj, certainly not. Suppose that $f$ is a non-zero character. Then $f(e_n) = f(e_n)^2 in {0,1}$. If $f(e_n) = 1 = f(e_m)$ and $nneq m$, then $2 = f(e_n + e_m) = f(e_n + e_m)^2$ because $e_n+e_m$ is an idempotent; a contradiction. Thus $f$ is a point-evaluation.
    $endgroup$
    – Tomek Kania
    Jan 4 at 20:29












  • $begingroup$
    Many thanks for your help :)
    $endgroup$
    – lojdmoj
    Jan 4 at 20:39






  • 1




    $begingroup$
    @lojdmoj, but $f$ is linear...
    $endgroup$
    – Tomek Kania
    Jan 4 at 22:35


















  • $begingroup$
    we know, that $Delta (l^p)={e_n:nin mathbb{N}}$ so then GT of $e_n$ is projection to n-th coordinate of $xin l^p$ ...$widehat{x}(n)=x_n$
    $endgroup$
    – lojdmoj
    Jan 4 at 20:09












  • $begingroup$
    the question is if there exist any other element of $Delta(l^p)$
    $endgroup$
    – lojdmoj
    Jan 4 at 20:13










  • $begingroup$
    @lojdmoj, certainly not. Suppose that $f$ is a non-zero character. Then $f(e_n) = f(e_n)^2 in {0,1}$. If $f(e_n) = 1 = f(e_m)$ and $nneq m$, then $2 = f(e_n + e_m) = f(e_n + e_m)^2$ because $e_n+e_m$ is an idempotent; a contradiction. Thus $f$ is a point-evaluation.
    $endgroup$
    – Tomek Kania
    Jan 4 at 20:29












  • $begingroup$
    Many thanks for your help :)
    $endgroup$
    – lojdmoj
    Jan 4 at 20:39






  • 1




    $begingroup$
    @lojdmoj, but $f$ is linear...
    $endgroup$
    – Tomek Kania
    Jan 4 at 22:35
















$begingroup$
we know, that $Delta (l^p)={e_n:nin mathbb{N}}$ so then GT of $e_n$ is projection to n-th coordinate of $xin l^p$ ...$widehat{x}(n)=x_n$
$endgroup$
– lojdmoj
Jan 4 at 20:09






$begingroup$
we know, that $Delta (l^p)={e_n:nin mathbb{N}}$ so then GT of $e_n$ is projection to n-th coordinate of $xin l^p$ ...$widehat{x}(n)=x_n$
$endgroup$
– lojdmoj
Jan 4 at 20:09














$begingroup$
the question is if there exist any other element of $Delta(l^p)$
$endgroup$
– lojdmoj
Jan 4 at 20:13




$begingroup$
the question is if there exist any other element of $Delta(l^p)$
$endgroup$
– lojdmoj
Jan 4 at 20:13












$begingroup$
@lojdmoj, certainly not. Suppose that $f$ is a non-zero character. Then $f(e_n) = f(e_n)^2 in {0,1}$. If $f(e_n) = 1 = f(e_m)$ and $nneq m$, then $2 = f(e_n + e_m) = f(e_n + e_m)^2$ because $e_n+e_m$ is an idempotent; a contradiction. Thus $f$ is a point-evaluation.
$endgroup$
– Tomek Kania
Jan 4 at 20:29






$begingroup$
@lojdmoj, certainly not. Suppose that $f$ is a non-zero character. Then $f(e_n) = f(e_n)^2 in {0,1}$. If $f(e_n) = 1 = f(e_m)$ and $nneq m$, then $2 = f(e_n + e_m) = f(e_n + e_m)^2$ because $e_n+e_m$ is an idempotent; a contradiction. Thus $f$ is a point-evaluation.
$endgroup$
– Tomek Kania
Jan 4 at 20:29














$begingroup$
Many thanks for your help :)
$endgroup$
– lojdmoj
Jan 4 at 20:39




$begingroup$
Many thanks for your help :)
$endgroup$
– lojdmoj
Jan 4 at 20:39




1




1




$begingroup$
@lojdmoj, but $f$ is linear...
$endgroup$
– Tomek Kania
Jan 4 at 22:35




$begingroup$
@lojdmoj, but $f$ is linear...
$endgroup$
– Tomek Kania
Jan 4 at 22:35


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3044111%2fgelfand-transformation-of-lp%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Ellipse (mathématiques)

Quarter-circle Tiles

Mont Emei