Solving $int sqrt{x}left(1+sqrt{x}right)^3mathrm{d}x $
Multi tool use
$begingroup$
$$ int sqrt{x}left(1+sqrt{x}right)^3dx $$
I tried to solve this by using substitution. However, I could not reach the answer.
I tried to replace $1+sqrt{x} = u$ and
$sqrt{x} = u$
But still did not get the answer.I don't want to open parenthesis and solve integral in that way.
calculus integration
$endgroup$
|
show 1 more comment
$begingroup$
$$ int sqrt{x}left(1+sqrt{x}right)^3dx $$
I tried to solve this by using substitution. However, I could not reach the answer.
I tried to replace $1+sqrt{x} = u$ and
$sqrt{x} = u$
But still did not get the answer.I don't want to open parenthesis and solve integral in that way.
calculus integration
$endgroup$
$begingroup$
Do you mean $$int sqrt{x} cdot left(1+sqrt{x}right)^3;?$$
$endgroup$
– Chinnapparaj R
Dec 17 '18 at 15:35
$begingroup$
Yes,thanks for correcting
$endgroup$
– Arif Rustamov
Dec 17 '18 at 15:40
3
$begingroup$
Mutliply out the cube to get four terms. Multiply through by the square root. Then you have an easy sum of powers.
$endgroup$
– Ethan Bolker
Dec 17 '18 at 15:40
3
$begingroup$
Why exactly would you not want to expand the integrand?
$endgroup$
– KM101
Dec 17 '18 at 15:42
1
$begingroup$
If you do a substitution you will still have parentheses that need opening: you may get three rather than four terms, but at the cost of the substitution, and for an indefinite integral the cost of re-substitution
$endgroup$
– Henry
Dec 17 '18 at 15:55
|
show 1 more comment
$begingroup$
$$ int sqrt{x}left(1+sqrt{x}right)^3dx $$
I tried to solve this by using substitution. However, I could not reach the answer.
I tried to replace $1+sqrt{x} = u$ and
$sqrt{x} = u$
But still did not get the answer.I don't want to open parenthesis and solve integral in that way.
calculus integration
$endgroup$
$$ int sqrt{x}left(1+sqrt{x}right)^3dx $$
I tried to solve this by using substitution. However, I could not reach the answer.
I tried to replace $1+sqrt{x} = u$ and
$sqrt{x} = u$
But still did not get the answer.I don't want to open parenthesis and solve integral in that way.
calculus integration
calculus integration
edited Dec 17 '18 at 15:54
Rebellos
14.6k31247
14.6k31247
asked Dec 17 '18 at 15:33
Arif RustamovArif Rustamov
367
367
$begingroup$
Do you mean $$int sqrt{x} cdot left(1+sqrt{x}right)^3;?$$
$endgroup$
– Chinnapparaj R
Dec 17 '18 at 15:35
$begingroup$
Yes,thanks for correcting
$endgroup$
– Arif Rustamov
Dec 17 '18 at 15:40
3
$begingroup$
Mutliply out the cube to get four terms. Multiply through by the square root. Then you have an easy sum of powers.
$endgroup$
– Ethan Bolker
Dec 17 '18 at 15:40
3
$begingroup$
Why exactly would you not want to expand the integrand?
$endgroup$
– KM101
Dec 17 '18 at 15:42
1
$begingroup$
If you do a substitution you will still have parentheses that need opening: you may get three rather than four terms, but at the cost of the substitution, and for an indefinite integral the cost of re-substitution
$endgroup$
– Henry
Dec 17 '18 at 15:55
|
show 1 more comment
$begingroup$
Do you mean $$int sqrt{x} cdot left(1+sqrt{x}right)^3;?$$
$endgroup$
– Chinnapparaj R
Dec 17 '18 at 15:35
$begingroup$
Yes,thanks for correcting
$endgroup$
– Arif Rustamov
Dec 17 '18 at 15:40
3
$begingroup$
Mutliply out the cube to get four terms. Multiply through by the square root. Then you have an easy sum of powers.
$endgroup$
– Ethan Bolker
Dec 17 '18 at 15:40
3
$begingroup$
Why exactly would you not want to expand the integrand?
$endgroup$
– KM101
Dec 17 '18 at 15:42
1
$begingroup$
If you do a substitution you will still have parentheses that need opening: you may get three rather than four terms, but at the cost of the substitution, and for an indefinite integral the cost of re-substitution
$endgroup$
– Henry
Dec 17 '18 at 15:55
$begingroup$
Do you mean $$int sqrt{x} cdot left(1+sqrt{x}right)^3;?$$
$endgroup$
– Chinnapparaj R
Dec 17 '18 at 15:35
$begingroup$
Do you mean $$int sqrt{x} cdot left(1+sqrt{x}right)^3;?$$
$endgroup$
– Chinnapparaj R
Dec 17 '18 at 15:35
$begingroup$
Yes,thanks for correcting
$endgroup$
– Arif Rustamov
Dec 17 '18 at 15:40
$begingroup$
Yes,thanks for correcting
$endgroup$
– Arif Rustamov
Dec 17 '18 at 15:40
3
3
$begingroup$
Mutliply out the cube to get four terms. Multiply through by the square root. Then you have an easy sum of powers.
$endgroup$
– Ethan Bolker
Dec 17 '18 at 15:40
$begingroup$
Mutliply out the cube to get four terms. Multiply through by the square root. Then you have an easy sum of powers.
$endgroup$
– Ethan Bolker
Dec 17 '18 at 15:40
3
3
$begingroup$
Why exactly would you not want to expand the integrand?
$endgroup$
– KM101
Dec 17 '18 at 15:42
$begingroup$
Why exactly would you not want to expand the integrand?
$endgroup$
– KM101
Dec 17 '18 at 15:42
1
1
$begingroup$
If you do a substitution you will still have parentheses that need opening: you may get three rather than four terms, but at the cost of the substitution, and for an indefinite integral the cost of re-substitution
$endgroup$
– Henry
Dec 17 '18 at 15:55
$begingroup$
If you do a substitution you will still have parentheses that need opening: you may get three rather than four terms, but at the cost of the substitution, and for an indefinite integral the cost of re-substitution
$endgroup$
– Henry
Dec 17 '18 at 15:55
|
show 1 more comment
2 Answers
2
active
oldest
votes
$begingroup$
Let $u = sqrt{x}+1 implies mathrm{d}x = 2sqrt{x}mathrm{d}u$. It will then be $x = (u-1)^2$. Thus, the integral becomes :
$$int (u-1)^2u^3mathrm{d}u ={displaystyleint}u^5,mathrm{d}u-class{steps-node}{cssId{steps-node-2}{2}}{displaystyleint}u^4,mathrm{d}u+{displaystyleint}u^3,mathrm{d}u =dfrac{u^6}{6}-dfrac{2u^5}{5}+dfrac{u^4}{4} + C $$
Now, substitute for $u= sqrt{x} + 1$ and you should get for the initial integral :
begin{align*}
int sqrt{x}(1+sqrt{x}) mathrm{d}x &=dfrac{left(sqrt{x}+1right)^6}{3}-dfrac{4left(sqrt{x}+1right)^5}{5}+dfrac{left(sqrt{x}+1right)^4}{2} + C\
&= boxed{dfrac{left(sqrt{x}+1right)^4left(10x-4sqrt{x}+1right)}{30}+C}.
end{align*}
$endgroup$
$begingroup$
Can we try $ x^{frac{-1}{2}}+1=u $ by taking $sqrt{x}$ common
$endgroup$
– Lakshya Sinha
Dec 17 '18 at 16:05
$begingroup$
@LakshyaSinha What?
$endgroup$
– Rebellos
Dec 17 '18 at 16:05
$begingroup$
Take $ sqrt{x} $ common from cubic term and suppose that as u
$endgroup$
– Lakshya Sinha
Dec 17 '18 at 16:07
$begingroup$
The person who disliked would be kind enough to point out ? The solution is perfectly clear and correct.
$endgroup$
– Rebellos
Dec 18 '18 at 18:42
add a comment |
$begingroup$
By parts $u=(1+sqrt{x})^3$ and $v'=sqrt{x}$:
$$int sqrt{x}left(1+sqrt{x}right)^3dx=frac{2}{3}x^{frac{3}{2}}left(1+sqrt{x}right)^3-int :xleft(1+sqrt{x}right)^2dx$$
And then by expanding:
$$int :xleft(1+sqrt{x}right)^2dx=frac{x^2}{2}+frac{4}{5}x^{frac{5}{2}}+frac{x^3}{3}$$
So
$$int sqrt{x}left(1+sqrt{x}right)^3dx=frac{2}{3}x^{frac{3}{2}}left(1+sqrt{x}right)^3-frac{x^2}{2}-frac{4}{5}x^{frac{5}{2}}-frac{x^3}{3}+C.$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3044088%2fsolving-int-sqrtx-left1-sqrtx-right3-mathrmdx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Let $u = sqrt{x}+1 implies mathrm{d}x = 2sqrt{x}mathrm{d}u$. It will then be $x = (u-1)^2$. Thus, the integral becomes :
$$int (u-1)^2u^3mathrm{d}u ={displaystyleint}u^5,mathrm{d}u-class{steps-node}{cssId{steps-node-2}{2}}{displaystyleint}u^4,mathrm{d}u+{displaystyleint}u^3,mathrm{d}u =dfrac{u^6}{6}-dfrac{2u^5}{5}+dfrac{u^4}{4} + C $$
Now, substitute for $u= sqrt{x} + 1$ and you should get for the initial integral :
begin{align*}
int sqrt{x}(1+sqrt{x}) mathrm{d}x &=dfrac{left(sqrt{x}+1right)^6}{3}-dfrac{4left(sqrt{x}+1right)^5}{5}+dfrac{left(sqrt{x}+1right)^4}{2} + C\
&= boxed{dfrac{left(sqrt{x}+1right)^4left(10x-4sqrt{x}+1right)}{30}+C}.
end{align*}
$endgroup$
$begingroup$
Can we try $ x^{frac{-1}{2}}+1=u $ by taking $sqrt{x}$ common
$endgroup$
– Lakshya Sinha
Dec 17 '18 at 16:05
$begingroup$
@LakshyaSinha What?
$endgroup$
– Rebellos
Dec 17 '18 at 16:05
$begingroup$
Take $ sqrt{x} $ common from cubic term and suppose that as u
$endgroup$
– Lakshya Sinha
Dec 17 '18 at 16:07
$begingroup$
The person who disliked would be kind enough to point out ? The solution is perfectly clear and correct.
$endgroup$
– Rebellos
Dec 18 '18 at 18:42
add a comment |
$begingroup$
Let $u = sqrt{x}+1 implies mathrm{d}x = 2sqrt{x}mathrm{d}u$. It will then be $x = (u-1)^2$. Thus, the integral becomes :
$$int (u-1)^2u^3mathrm{d}u ={displaystyleint}u^5,mathrm{d}u-class{steps-node}{cssId{steps-node-2}{2}}{displaystyleint}u^4,mathrm{d}u+{displaystyleint}u^3,mathrm{d}u =dfrac{u^6}{6}-dfrac{2u^5}{5}+dfrac{u^4}{4} + C $$
Now, substitute for $u= sqrt{x} + 1$ and you should get for the initial integral :
begin{align*}
int sqrt{x}(1+sqrt{x}) mathrm{d}x &=dfrac{left(sqrt{x}+1right)^6}{3}-dfrac{4left(sqrt{x}+1right)^5}{5}+dfrac{left(sqrt{x}+1right)^4}{2} + C\
&= boxed{dfrac{left(sqrt{x}+1right)^4left(10x-4sqrt{x}+1right)}{30}+C}.
end{align*}
$endgroup$
$begingroup$
Can we try $ x^{frac{-1}{2}}+1=u $ by taking $sqrt{x}$ common
$endgroup$
– Lakshya Sinha
Dec 17 '18 at 16:05
$begingroup$
@LakshyaSinha What?
$endgroup$
– Rebellos
Dec 17 '18 at 16:05
$begingroup$
Take $ sqrt{x} $ common from cubic term and suppose that as u
$endgroup$
– Lakshya Sinha
Dec 17 '18 at 16:07
$begingroup$
The person who disliked would be kind enough to point out ? The solution is perfectly clear and correct.
$endgroup$
– Rebellos
Dec 18 '18 at 18:42
add a comment |
$begingroup$
Let $u = sqrt{x}+1 implies mathrm{d}x = 2sqrt{x}mathrm{d}u$. It will then be $x = (u-1)^2$. Thus, the integral becomes :
$$int (u-1)^2u^3mathrm{d}u ={displaystyleint}u^5,mathrm{d}u-class{steps-node}{cssId{steps-node-2}{2}}{displaystyleint}u^4,mathrm{d}u+{displaystyleint}u^3,mathrm{d}u =dfrac{u^6}{6}-dfrac{2u^5}{5}+dfrac{u^4}{4} + C $$
Now, substitute for $u= sqrt{x} + 1$ and you should get for the initial integral :
begin{align*}
int sqrt{x}(1+sqrt{x}) mathrm{d}x &=dfrac{left(sqrt{x}+1right)^6}{3}-dfrac{4left(sqrt{x}+1right)^5}{5}+dfrac{left(sqrt{x}+1right)^4}{2} + C\
&= boxed{dfrac{left(sqrt{x}+1right)^4left(10x-4sqrt{x}+1right)}{30}+C}.
end{align*}
$endgroup$
Let $u = sqrt{x}+1 implies mathrm{d}x = 2sqrt{x}mathrm{d}u$. It will then be $x = (u-1)^2$. Thus, the integral becomes :
$$int (u-1)^2u^3mathrm{d}u ={displaystyleint}u^5,mathrm{d}u-class{steps-node}{cssId{steps-node-2}{2}}{displaystyleint}u^4,mathrm{d}u+{displaystyleint}u^3,mathrm{d}u =dfrac{u^6}{6}-dfrac{2u^5}{5}+dfrac{u^4}{4} + C $$
Now, substitute for $u= sqrt{x} + 1$ and you should get for the initial integral :
begin{align*}
int sqrt{x}(1+sqrt{x}) mathrm{d}x &=dfrac{left(sqrt{x}+1right)^6}{3}-dfrac{4left(sqrt{x}+1right)^5}{5}+dfrac{left(sqrt{x}+1right)^4}{2} + C\
&= boxed{dfrac{left(sqrt{x}+1right)^4left(10x-4sqrt{x}+1right)}{30}+C}.
end{align*}
edited Dec 17 '18 at 15:54
Christoph
12.1k1642
12.1k1642
answered Dec 17 '18 at 15:43
RebellosRebellos
14.6k31247
14.6k31247
$begingroup$
Can we try $ x^{frac{-1}{2}}+1=u $ by taking $sqrt{x}$ common
$endgroup$
– Lakshya Sinha
Dec 17 '18 at 16:05
$begingroup$
@LakshyaSinha What?
$endgroup$
– Rebellos
Dec 17 '18 at 16:05
$begingroup$
Take $ sqrt{x} $ common from cubic term and suppose that as u
$endgroup$
– Lakshya Sinha
Dec 17 '18 at 16:07
$begingroup$
The person who disliked would be kind enough to point out ? The solution is perfectly clear and correct.
$endgroup$
– Rebellos
Dec 18 '18 at 18:42
add a comment |
$begingroup$
Can we try $ x^{frac{-1}{2}}+1=u $ by taking $sqrt{x}$ common
$endgroup$
– Lakshya Sinha
Dec 17 '18 at 16:05
$begingroup$
@LakshyaSinha What?
$endgroup$
– Rebellos
Dec 17 '18 at 16:05
$begingroup$
Take $ sqrt{x} $ common from cubic term and suppose that as u
$endgroup$
– Lakshya Sinha
Dec 17 '18 at 16:07
$begingroup$
The person who disliked would be kind enough to point out ? The solution is perfectly clear and correct.
$endgroup$
– Rebellos
Dec 18 '18 at 18:42
$begingroup$
Can we try $ x^{frac{-1}{2}}+1=u $ by taking $sqrt{x}$ common
$endgroup$
– Lakshya Sinha
Dec 17 '18 at 16:05
$begingroup$
Can we try $ x^{frac{-1}{2}}+1=u $ by taking $sqrt{x}$ common
$endgroup$
– Lakshya Sinha
Dec 17 '18 at 16:05
$begingroup$
@LakshyaSinha What?
$endgroup$
– Rebellos
Dec 17 '18 at 16:05
$begingroup$
@LakshyaSinha What?
$endgroup$
– Rebellos
Dec 17 '18 at 16:05
$begingroup$
Take $ sqrt{x} $ common from cubic term and suppose that as u
$endgroup$
– Lakshya Sinha
Dec 17 '18 at 16:07
$begingroup$
Take $ sqrt{x} $ common from cubic term and suppose that as u
$endgroup$
– Lakshya Sinha
Dec 17 '18 at 16:07
$begingroup$
The person who disliked would be kind enough to point out ? The solution is perfectly clear and correct.
$endgroup$
– Rebellos
Dec 18 '18 at 18:42
$begingroup$
The person who disliked would be kind enough to point out ? The solution is perfectly clear and correct.
$endgroup$
– Rebellos
Dec 18 '18 at 18:42
add a comment |
$begingroup$
By parts $u=(1+sqrt{x})^3$ and $v'=sqrt{x}$:
$$int sqrt{x}left(1+sqrt{x}right)^3dx=frac{2}{3}x^{frac{3}{2}}left(1+sqrt{x}right)^3-int :xleft(1+sqrt{x}right)^2dx$$
And then by expanding:
$$int :xleft(1+sqrt{x}right)^2dx=frac{x^2}{2}+frac{4}{5}x^{frac{5}{2}}+frac{x^3}{3}$$
So
$$int sqrt{x}left(1+sqrt{x}right)^3dx=frac{2}{3}x^{frac{3}{2}}left(1+sqrt{x}right)^3-frac{x^2}{2}-frac{4}{5}x^{frac{5}{2}}-frac{x^3}{3}+C.$$
$endgroup$
add a comment |
$begingroup$
By parts $u=(1+sqrt{x})^3$ and $v'=sqrt{x}$:
$$int sqrt{x}left(1+sqrt{x}right)^3dx=frac{2}{3}x^{frac{3}{2}}left(1+sqrt{x}right)^3-int :xleft(1+sqrt{x}right)^2dx$$
And then by expanding:
$$int :xleft(1+sqrt{x}right)^2dx=frac{x^2}{2}+frac{4}{5}x^{frac{5}{2}}+frac{x^3}{3}$$
So
$$int sqrt{x}left(1+sqrt{x}right)^3dx=frac{2}{3}x^{frac{3}{2}}left(1+sqrt{x}right)^3-frac{x^2}{2}-frac{4}{5}x^{frac{5}{2}}-frac{x^3}{3}+C.$$
$endgroup$
add a comment |
$begingroup$
By parts $u=(1+sqrt{x})^3$ and $v'=sqrt{x}$:
$$int sqrt{x}left(1+sqrt{x}right)^3dx=frac{2}{3}x^{frac{3}{2}}left(1+sqrt{x}right)^3-int :xleft(1+sqrt{x}right)^2dx$$
And then by expanding:
$$int :xleft(1+sqrt{x}right)^2dx=frac{x^2}{2}+frac{4}{5}x^{frac{5}{2}}+frac{x^3}{3}$$
So
$$int sqrt{x}left(1+sqrt{x}right)^3dx=frac{2}{3}x^{frac{3}{2}}left(1+sqrt{x}right)^3-frac{x^2}{2}-frac{4}{5}x^{frac{5}{2}}-frac{x^3}{3}+C.$$
$endgroup$
By parts $u=(1+sqrt{x})^3$ and $v'=sqrt{x}$:
$$int sqrt{x}left(1+sqrt{x}right)^3dx=frac{2}{3}x^{frac{3}{2}}left(1+sqrt{x}right)^3-int :xleft(1+sqrt{x}right)^2dx$$
And then by expanding:
$$int :xleft(1+sqrt{x}right)^2dx=frac{x^2}{2}+frac{4}{5}x^{frac{5}{2}}+frac{x^3}{3}$$
So
$$int sqrt{x}left(1+sqrt{x}right)^3dx=frac{2}{3}x^{frac{3}{2}}left(1+sqrt{x}right)^3-frac{x^2}{2}-frac{4}{5}x^{frac{5}{2}}-frac{x^3}{3}+C.$$
answered Dec 17 '18 at 15:47
orangeorange
675215
675215
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3044088%2fsolving-int-sqrtx-left1-sqrtx-right3-mathrmdx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
QwBAv5rfUo6gigiJQY3fYLekO,kQkesTJ5hkF1V2Vj8hK C s7 1Z3qU 3,28ZsRnW9i,qmDX
$begingroup$
Do you mean $$int sqrt{x} cdot left(1+sqrt{x}right)^3;?$$
$endgroup$
– Chinnapparaj R
Dec 17 '18 at 15:35
$begingroup$
Yes,thanks for correcting
$endgroup$
– Arif Rustamov
Dec 17 '18 at 15:40
3
$begingroup$
Mutliply out the cube to get four terms. Multiply through by the square root. Then you have an easy sum of powers.
$endgroup$
– Ethan Bolker
Dec 17 '18 at 15:40
3
$begingroup$
Why exactly would you not want to expand the integrand?
$endgroup$
– KM101
Dec 17 '18 at 15:42
1
$begingroup$
If you do a substitution you will still have parentheses that need opening: you may get three rather than four terms, but at the cost of the substitution, and for an indefinite integral the cost of re-substitution
$endgroup$
– Henry
Dec 17 '18 at 15:55