Solving $int sqrt{x}left(1+sqrt{x}right)^3mathrm{d}x $

Multi tool use
Multi tool use












0












$begingroup$


$$ int sqrt{x}left(1+sqrt{x}right)^3dx $$
I tried to solve this by using substitution. However, I could not reach the answer.
I tried to replace $1+sqrt{x} = u$ and
$sqrt{x} = u$
But still did not get the answer.I don't want to open parenthesis and solve integral in that way.










share|cite|improve this question











$endgroup$












  • $begingroup$
    Do you mean $$int sqrt{x} cdot left(1+sqrt{x}right)^3;?$$
    $endgroup$
    – Chinnapparaj R
    Dec 17 '18 at 15:35










  • $begingroup$
    Yes,thanks for correcting
    $endgroup$
    – Arif Rustamov
    Dec 17 '18 at 15:40






  • 3




    $begingroup$
    Mutliply out the cube to get four terms. Multiply through by the square root. Then you have an easy sum of powers.
    $endgroup$
    – Ethan Bolker
    Dec 17 '18 at 15:40






  • 3




    $begingroup$
    Why exactly would you not want to expand the integrand?
    $endgroup$
    – KM101
    Dec 17 '18 at 15:42






  • 1




    $begingroup$
    If you do a substitution you will still have parentheses that need opening: you may get three rather than four terms, but at the cost of the substitution, and for an indefinite integral the cost of re-substitution
    $endgroup$
    – Henry
    Dec 17 '18 at 15:55


















0












$begingroup$


$$ int sqrt{x}left(1+sqrt{x}right)^3dx $$
I tried to solve this by using substitution. However, I could not reach the answer.
I tried to replace $1+sqrt{x} = u$ and
$sqrt{x} = u$
But still did not get the answer.I don't want to open parenthesis and solve integral in that way.










share|cite|improve this question











$endgroup$












  • $begingroup$
    Do you mean $$int sqrt{x} cdot left(1+sqrt{x}right)^3;?$$
    $endgroup$
    – Chinnapparaj R
    Dec 17 '18 at 15:35










  • $begingroup$
    Yes,thanks for correcting
    $endgroup$
    – Arif Rustamov
    Dec 17 '18 at 15:40






  • 3




    $begingroup$
    Mutliply out the cube to get four terms. Multiply through by the square root. Then you have an easy sum of powers.
    $endgroup$
    – Ethan Bolker
    Dec 17 '18 at 15:40






  • 3




    $begingroup$
    Why exactly would you not want to expand the integrand?
    $endgroup$
    – KM101
    Dec 17 '18 at 15:42






  • 1




    $begingroup$
    If you do a substitution you will still have parentheses that need opening: you may get three rather than four terms, but at the cost of the substitution, and for an indefinite integral the cost of re-substitution
    $endgroup$
    – Henry
    Dec 17 '18 at 15:55
















0












0








0





$begingroup$


$$ int sqrt{x}left(1+sqrt{x}right)^3dx $$
I tried to solve this by using substitution. However, I could not reach the answer.
I tried to replace $1+sqrt{x} = u$ and
$sqrt{x} = u$
But still did not get the answer.I don't want to open parenthesis and solve integral in that way.










share|cite|improve this question











$endgroup$




$$ int sqrt{x}left(1+sqrt{x}right)^3dx $$
I tried to solve this by using substitution. However, I could not reach the answer.
I tried to replace $1+sqrt{x} = u$ and
$sqrt{x} = u$
But still did not get the answer.I don't want to open parenthesis and solve integral in that way.







calculus integration






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 17 '18 at 15:54









Rebellos

14.6k31247




14.6k31247










asked Dec 17 '18 at 15:33









Arif RustamovArif Rustamov

367




367












  • $begingroup$
    Do you mean $$int sqrt{x} cdot left(1+sqrt{x}right)^3;?$$
    $endgroup$
    – Chinnapparaj R
    Dec 17 '18 at 15:35










  • $begingroup$
    Yes,thanks for correcting
    $endgroup$
    – Arif Rustamov
    Dec 17 '18 at 15:40






  • 3




    $begingroup$
    Mutliply out the cube to get four terms. Multiply through by the square root. Then you have an easy sum of powers.
    $endgroup$
    – Ethan Bolker
    Dec 17 '18 at 15:40






  • 3




    $begingroup$
    Why exactly would you not want to expand the integrand?
    $endgroup$
    – KM101
    Dec 17 '18 at 15:42






  • 1




    $begingroup$
    If you do a substitution you will still have parentheses that need opening: you may get three rather than four terms, but at the cost of the substitution, and for an indefinite integral the cost of re-substitution
    $endgroup$
    – Henry
    Dec 17 '18 at 15:55




















  • $begingroup$
    Do you mean $$int sqrt{x} cdot left(1+sqrt{x}right)^3;?$$
    $endgroup$
    – Chinnapparaj R
    Dec 17 '18 at 15:35










  • $begingroup$
    Yes,thanks for correcting
    $endgroup$
    – Arif Rustamov
    Dec 17 '18 at 15:40






  • 3




    $begingroup$
    Mutliply out the cube to get four terms. Multiply through by the square root. Then you have an easy sum of powers.
    $endgroup$
    – Ethan Bolker
    Dec 17 '18 at 15:40






  • 3




    $begingroup$
    Why exactly would you not want to expand the integrand?
    $endgroup$
    – KM101
    Dec 17 '18 at 15:42






  • 1




    $begingroup$
    If you do a substitution you will still have parentheses that need opening: you may get three rather than four terms, but at the cost of the substitution, and for an indefinite integral the cost of re-substitution
    $endgroup$
    – Henry
    Dec 17 '18 at 15:55


















$begingroup$
Do you mean $$int sqrt{x} cdot left(1+sqrt{x}right)^3;?$$
$endgroup$
– Chinnapparaj R
Dec 17 '18 at 15:35




$begingroup$
Do you mean $$int sqrt{x} cdot left(1+sqrt{x}right)^3;?$$
$endgroup$
– Chinnapparaj R
Dec 17 '18 at 15:35












$begingroup$
Yes,thanks for correcting
$endgroup$
– Arif Rustamov
Dec 17 '18 at 15:40




$begingroup$
Yes,thanks for correcting
$endgroup$
– Arif Rustamov
Dec 17 '18 at 15:40




3




3




$begingroup$
Mutliply out the cube to get four terms. Multiply through by the square root. Then you have an easy sum of powers.
$endgroup$
– Ethan Bolker
Dec 17 '18 at 15:40




$begingroup$
Mutliply out the cube to get four terms. Multiply through by the square root. Then you have an easy sum of powers.
$endgroup$
– Ethan Bolker
Dec 17 '18 at 15:40




3




3




$begingroup$
Why exactly would you not want to expand the integrand?
$endgroup$
– KM101
Dec 17 '18 at 15:42




$begingroup$
Why exactly would you not want to expand the integrand?
$endgroup$
– KM101
Dec 17 '18 at 15:42




1




1




$begingroup$
If you do a substitution you will still have parentheses that need opening: you may get three rather than four terms, but at the cost of the substitution, and for an indefinite integral the cost of re-substitution
$endgroup$
– Henry
Dec 17 '18 at 15:55






$begingroup$
If you do a substitution you will still have parentheses that need opening: you may get three rather than four terms, but at the cost of the substitution, and for an indefinite integral the cost of re-substitution
$endgroup$
– Henry
Dec 17 '18 at 15:55












2 Answers
2






active

oldest

votes


















4












$begingroup$

Let $u = sqrt{x}+1 implies mathrm{d}x = 2sqrt{x}mathrm{d}u$. It will then be $x = (u-1)^2$. Thus, the integral becomes :



$$int (u-1)^2u^3mathrm{d}u ={displaystyleint}u^5,mathrm{d}u-class{steps-node}{cssId{steps-node-2}{2}}{displaystyleint}u^4,mathrm{d}u+{displaystyleint}u^3,mathrm{d}u =dfrac{u^6}{6}-dfrac{2u^5}{5}+dfrac{u^4}{4} + C $$



Now, substitute for $u= sqrt{x} + 1$ and you should get for the initial integral :



begin{align*}
int sqrt{x}(1+sqrt{x}) mathrm{d}x &=dfrac{left(sqrt{x}+1right)^6}{3}-dfrac{4left(sqrt{x}+1right)^5}{5}+dfrac{left(sqrt{x}+1right)^4}{2} + C\
&= boxed{dfrac{left(sqrt{x}+1right)^4left(10x-4sqrt{x}+1right)}{30}+C}.
end{align*}






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Can we try $ x^{frac{-1}{2}}+1=u $ by taking $sqrt{x}$ common
    $endgroup$
    – Lakshya Sinha
    Dec 17 '18 at 16:05










  • $begingroup$
    @LakshyaSinha What?
    $endgroup$
    – Rebellos
    Dec 17 '18 at 16:05










  • $begingroup$
    Take $ sqrt{x} $ common from cubic term and suppose that as u
    $endgroup$
    – Lakshya Sinha
    Dec 17 '18 at 16:07










  • $begingroup$
    The person who disliked would be kind enough to point out ? The solution is perfectly clear and correct.
    $endgroup$
    – Rebellos
    Dec 18 '18 at 18:42



















0












$begingroup$

By parts $u=(1+sqrt{x})^3$ and $v'=sqrt{x}$:



$$int sqrt{x}left(1+sqrt{x}right)^3dx=frac{2}{3}x^{frac{3}{2}}left(1+sqrt{x}right)^3-int :xleft(1+sqrt{x}right)^2dx$$



And then by expanding:
$$int :xleft(1+sqrt{x}right)^2dx=frac{x^2}{2}+frac{4}{5}x^{frac{5}{2}}+frac{x^3}{3}$$



So
$$int sqrt{x}left(1+sqrt{x}right)^3dx=frac{2}{3}x^{frac{3}{2}}left(1+sqrt{x}right)^3-frac{x^2}{2}-frac{4}{5}x^{frac{5}{2}}-frac{x^3}{3}+C.$$






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3044088%2fsolving-int-sqrtx-left1-sqrtx-right3-mathrmdx%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    4












    $begingroup$

    Let $u = sqrt{x}+1 implies mathrm{d}x = 2sqrt{x}mathrm{d}u$. It will then be $x = (u-1)^2$. Thus, the integral becomes :



    $$int (u-1)^2u^3mathrm{d}u ={displaystyleint}u^5,mathrm{d}u-class{steps-node}{cssId{steps-node-2}{2}}{displaystyleint}u^4,mathrm{d}u+{displaystyleint}u^3,mathrm{d}u =dfrac{u^6}{6}-dfrac{2u^5}{5}+dfrac{u^4}{4} + C $$



    Now, substitute for $u= sqrt{x} + 1$ and you should get for the initial integral :



    begin{align*}
    int sqrt{x}(1+sqrt{x}) mathrm{d}x &=dfrac{left(sqrt{x}+1right)^6}{3}-dfrac{4left(sqrt{x}+1right)^5}{5}+dfrac{left(sqrt{x}+1right)^4}{2} + C\
    &= boxed{dfrac{left(sqrt{x}+1right)^4left(10x-4sqrt{x}+1right)}{30}+C}.
    end{align*}






    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      Can we try $ x^{frac{-1}{2}}+1=u $ by taking $sqrt{x}$ common
      $endgroup$
      – Lakshya Sinha
      Dec 17 '18 at 16:05










    • $begingroup$
      @LakshyaSinha What?
      $endgroup$
      – Rebellos
      Dec 17 '18 at 16:05










    • $begingroup$
      Take $ sqrt{x} $ common from cubic term and suppose that as u
      $endgroup$
      – Lakshya Sinha
      Dec 17 '18 at 16:07










    • $begingroup$
      The person who disliked would be kind enough to point out ? The solution is perfectly clear and correct.
      $endgroup$
      – Rebellos
      Dec 18 '18 at 18:42
















    4












    $begingroup$

    Let $u = sqrt{x}+1 implies mathrm{d}x = 2sqrt{x}mathrm{d}u$. It will then be $x = (u-1)^2$. Thus, the integral becomes :



    $$int (u-1)^2u^3mathrm{d}u ={displaystyleint}u^5,mathrm{d}u-class{steps-node}{cssId{steps-node-2}{2}}{displaystyleint}u^4,mathrm{d}u+{displaystyleint}u^3,mathrm{d}u =dfrac{u^6}{6}-dfrac{2u^5}{5}+dfrac{u^4}{4} + C $$



    Now, substitute for $u= sqrt{x} + 1$ and you should get for the initial integral :



    begin{align*}
    int sqrt{x}(1+sqrt{x}) mathrm{d}x &=dfrac{left(sqrt{x}+1right)^6}{3}-dfrac{4left(sqrt{x}+1right)^5}{5}+dfrac{left(sqrt{x}+1right)^4}{2} + C\
    &= boxed{dfrac{left(sqrt{x}+1right)^4left(10x-4sqrt{x}+1right)}{30}+C}.
    end{align*}






    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      Can we try $ x^{frac{-1}{2}}+1=u $ by taking $sqrt{x}$ common
      $endgroup$
      – Lakshya Sinha
      Dec 17 '18 at 16:05










    • $begingroup$
      @LakshyaSinha What?
      $endgroup$
      – Rebellos
      Dec 17 '18 at 16:05










    • $begingroup$
      Take $ sqrt{x} $ common from cubic term and suppose that as u
      $endgroup$
      – Lakshya Sinha
      Dec 17 '18 at 16:07










    • $begingroup$
      The person who disliked would be kind enough to point out ? The solution is perfectly clear and correct.
      $endgroup$
      – Rebellos
      Dec 18 '18 at 18:42














    4












    4








    4





    $begingroup$

    Let $u = sqrt{x}+1 implies mathrm{d}x = 2sqrt{x}mathrm{d}u$. It will then be $x = (u-1)^2$. Thus, the integral becomes :



    $$int (u-1)^2u^3mathrm{d}u ={displaystyleint}u^5,mathrm{d}u-class{steps-node}{cssId{steps-node-2}{2}}{displaystyleint}u^4,mathrm{d}u+{displaystyleint}u^3,mathrm{d}u =dfrac{u^6}{6}-dfrac{2u^5}{5}+dfrac{u^4}{4} + C $$



    Now, substitute for $u= sqrt{x} + 1$ and you should get for the initial integral :



    begin{align*}
    int sqrt{x}(1+sqrt{x}) mathrm{d}x &=dfrac{left(sqrt{x}+1right)^6}{3}-dfrac{4left(sqrt{x}+1right)^5}{5}+dfrac{left(sqrt{x}+1right)^4}{2} + C\
    &= boxed{dfrac{left(sqrt{x}+1right)^4left(10x-4sqrt{x}+1right)}{30}+C}.
    end{align*}






    share|cite|improve this answer











    $endgroup$



    Let $u = sqrt{x}+1 implies mathrm{d}x = 2sqrt{x}mathrm{d}u$. It will then be $x = (u-1)^2$. Thus, the integral becomes :



    $$int (u-1)^2u^3mathrm{d}u ={displaystyleint}u^5,mathrm{d}u-class{steps-node}{cssId{steps-node-2}{2}}{displaystyleint}u^4,mathrm{d}u+{displaystyleint}u^3,mathrm{d}u =dfrac{u^6}{6}-dfrac{2u^5}{5}+dfrac{u^4}{4} + C $$



    Now, substitute for $u= sqrt{x} + 1$ and you should get for the initial integral :



    begin{align*}
    int sqrt{x}(1+sqrt{x}) mathrm{d}x &=dfrac{left(sqrt{x}+1right)^6}{3}-dfrac{4left(sqrt{x}+1right)^5}{5}+dfrac{left(sqrt{x}+1right)^4}{2} + C\
    &= boxed{dfrac{left(sqrt{x}+1right)^4left(10x-4sqrt{x}+1right)}{30}+C}.
    end{align*}







    share|cite|improve this answer














    share|cite|improve this answer



    share|cite|improve this answer








    edited Dec 17 '18 at 15:54









    Christoph

    12.1k1642




    12.1k1642










    answered Dec 17 '18 at 15:43









    RebellosRebellos

    14.6k31247




    14.6k31247












    • $begingroup$
      Can we try $ x^{frac{-1}{2}}+1=u $ by taking $sqrt{x}$ common
      $endgroup$
      – Lakshya Sinha
      Dec 17 '18 at 16:05










    • $begingroup$
      @LakshyaSinha What?
      $endgroup$
      – Rebellos
      Dec 17 '18 at 16:05










    • $begingroup$
      Take $ sqrt{x} $ common from cubic term and suppose that as u
      $endgroup$
      – Lakshya Sinha
      Dec 17 '18 at 16:07










    • $begingroup$
      The person who disliked would be kind enough to point out ? The solution is perfectly clear and correct.
      $endgroup$
      – Rebellos
      Dec 18 '18 at 18:42


















    • $begingroup$
      Can we try $ x^{frac{-1}{2}}+1=u $ by taking $sqrt{x}$ common
      $endgroup$
      – Lakshya Sinha
      Dec 17 '18 at 16:05










    • $begingroup$
      @LakshyaSinha What?
      $endgroup$
      – Rebellos
      Dec 17 '18 at 16:05










    • $begingroup$
      Take $ sqrt{x} $ common from cubic term and suppose that as u
      $endgroup$
      – Lakshya Sinha
      Dec 17 '18 at 16:07










    • $begingroup$
      The person who disliked would be kind enough to point out ? The solution is perfectly clear and correct.
      $endgroup$
      – Rebellos
      Dec 18 '18 at 18:42
















    $begingroup$
    Can we try $ x^{frac{-1}{2}}+1=u $ by taking $sqrt{x}$ common
    $endgroup$
    – Lakshya Sinha
    Dec 17 '18 at 16:05




    $begingroup$
    Can we try $ x^{frac{-1}{2}}+1=u $ by taking $sqrt{x}$ common
    $endgroup$
    – Lakshya Sinha
    Dec 17 '18 at 16:05












    $begingroup$
    @LakshyaSinha What?
    $endgroup$
    – Rebellos
    Dec 17 '18 at 16:05




    $begingroup$
    @LakshyaSinha What?
    $endgroup$
    – Rebellos
    Dec 17 '18 at 16:05












    $begingroup$
    Take $ sqrt{x} $ common from cubic term and suppose that as u
    $endgroup$
    – Lakshya Sinha
    Dec 17 '18 at 16:07




    $begingroup$
    Take $ sqrt{x} $ common from cubic term and suppose that as u
    $endgroup$
    – Lakshya Sinha
    Dec 17 '18 at 16:07












    $begingroup$
    The person who disliked would be kind enough to point out ? The solution is perfectly clear and correct.
    $endgroup$
    – Rebellos
    Dec 18 '18 at 18:42




    $begingroup$
    The person who disliked would be kind enough to point out ? The solution is perfectly clear and correct.
    $endgroup$
    – Rebellos
    Dec 18 '18 at 18:42











    0












    $begingroup$

    By parts $u=(1+sqrt{x})^3$ and $v'=sqrt{x}$:



    $$int sqrt{x}left(1+sqrt{x}right)^3dx=frac{2}{3}x^{frac{3}{2}}left(1+sqrt{x}right)^3-int :xleft(1+sqrt{x}right)^2dx$$



    And then by expanding:
    $$int :xleft(1+sqrt{x}right)^2dx=frac{x^2}{2}+frac{4}{5}x^{frac{5}{2}}+frac{x^3}{3}$$



    So
    $$int sqrt{x}left(1+sqrt{x}right)^3dx=frac{2}{3}x^{frac{3}{2}}left(1+sqrt{x}right)^3-frac{x^2}{2}-frac{4}{5}x^{frac{5}{2}}-frac{x^3}{3}+C.$$






    share|cite|improve this answer









    $endgroup$


















      0












      $begingroup$

      By parts $u=(1+sqrt{x})^3$ and $v'=sqrt{x}$:



      $$int sqrt{x}left(1+sqrt{x}right)^3dx=frac{2}{3}x^{frac{3}{2}}left(1+sqrt{x}right)^3-int :xleft(1+sqrt{x}right)^2dx$$



      And then by expanding:
      $$int :xleft(1+sqrt{x}right)^2dx=frac{x^2}{2}+frac{4}{5}x^{frac{5}{2}}+frac{x^3}{3}$$



      So
      $$int sqrt{x}left(1+sqrt{x}right)^3dx=frac{2}{3}x^{frac{3}{2}}left(1+sqrt{x}right)^3-frac{x^2}{2}-frac{4}{5}x^{frac{5}{2}}-frac{x^3}{3}+C.$$






      share|cite|improve this answer









      $endgroup$
















        0












        0








        0





        $begingroup$

        By parts $u=(1+sqrt{x})^3$ and $v'=sqrt{x}$:



        $$int sqrt{x}left(1+sqrt{x}right)^3dx=frac{2}{3}x^{frac{3}{2}}left(1+sqrt{x}right)^3-int :xleft(1+sqrt{x}right)^2dx$$



        And then by expanding:
        $$int :xleft(1+sqrt{x}right)^2dx=frac{x^2}{2}+frac{4}{5}x^{frac{5}{2}}+frac{x^3}{3}$$



        So
        $$int sqrt{x}left(1+sqrt{x}right)^3dx=frac{2}{3}x^{frac{3}{2}}left(1+sqrt{x}right)^3-frac{x^2}{2}-frac{4}{5}x^{frac{5}{2}}-frac{x^3}{3}+C.$$






        share|cite|improve this answer









        $endgroup$



        By parts $u=(1+sqrt{x})^3$ and $v'=sqrt{x}$:



        $$int sqrt{x}left(1+sqrt{x}right)^3dx=frac{2}{3}x^{frac{3}{2}}left(1+sqrt{x}right)^3-int :xleft(1+sqrt{x}right)^2dx$$



        And then by expanding:
        $$int :xleft(1+sqrt{x}right)^2dx=frac{x^2}{2}+frac{4}{5}x^{frac{5}{2}}+frac{x^3}{3}$$



        So
        $$int sqrt{x}left(1+sqrt{x}right)^3dx=frac{2}{3}x^{frac{3}{2}}left(1+sqrt{x}right)^3-frac{x^2}{2}-frac{4}{5}x^{frac{5}{2}}-frac{x^3}{3}+C.$$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Dec 17 '18 at 15:47









        orangeorange

        675215




        675215






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3044088%2fsolving-int-sqrtx-left1-sqrtx-right3-mathrmdx%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            QwBAv5rfUo6gigiJQY3fYLekO,kQkesTJ5hkF1V2Vj8hK C s7 1Z3qU 3,28ZsRnW9i,qmDX
            iAlUgM9jgvYCINCRxuH,WPzz EcHXJavin M TU4Y JYrony7HV 3 ZjOQSh0oelOlpSJYsnkfsdSz qVEm

            Popular posts from this blog

            Ellipse (mathématiques)

            Mont Emei

            Quarter-circle Tiles