how to find the volume of intersection between eleptic cylinder and cylinder?












0












$begingroup$



let C be the eleptic cylinder C = {$frac{y^2}{4} + z^2leq 1$}.



let D be the cylinder {$x^2 + z^2 leq 1$}
find the volume of intersection of C and D




this is what i did :
$$V = int_{z=-1}^{z=1}int_{y=-sqrt{4-4z^2}}^{y=sqrt{4-4z^2}}int_{x=-sqrt{1-z^2}}^{x=sqrt{1-z^2}} 1{ dx}{ dy}{ dz} $$



$$= int_{z=-1}^{z=1}int_{y=-sqrt{4-4z^2}}^{y=sqrt{4-4z^2}}2sqrt{1-z^2}{ dy}{ dz}=$$
$$= int_{z=-1}^{z=1}2sqrt{1-z^2}*2sqrt{4-4z^2} { dz}= int_{z=-1}^{z=1}4sqrt{4z^4-8z^2+4} { dz}=int_{z=-1}^{z=1}4sqrt{(2z^2 -2)^2} { dz} = 10frac{2}{3}$$



why did i get negative volume ?
did i do it correctly ? or am i missing something










share|cite|improve this question











$endgroup$












  • $begingroup$
    correct edited *
    $endgroup$
    – Mather
    Dec 15 '18 at 15:12












  • $begingroup$
    The integral looks right to me, and you certainly shouldn't get a negative answer. Please post your calculations, so we can pinpoint the error.
    $endgroup$
    – saulspatz
    Dec 15 '18 at 15:15










  • $begingroup$
    i have posted extended calculation
    $endgroup$
    – Mather
    Dec 15 '18 at 15:28










  • $begingroup$
    I agree up to the very last equal sign. How did you do the last integral? I'm guessing you simplified $sqrt{z^2-1}$ as $z^2-1$ instead of $1-z^2$.
    $endgroup$
    – saulspatz
    Dec 15 '18 at 15:31












  • $begingroup$
    the squrt of $(2z - 2)^2 $ is $ 2z-2 $ so doing the integral it is $ z^3/3 - 2z $
    $endgroup$
    – Mather
    Dec 15 '18 at 15:33


















0












$begingroup$



let C be the eleptic cylinder C = {$frac{y^2}{4} + z^2leq 1$}.



let D be the cylinder {$x^2 + z^2 leq 1$}
find the volume of intersection of C and D




this is what i did :
$$V = int_{z=-1}^{z=1}int_{y=-sqrt{4-4z^2}}^{y=sqrt{4-4z^2}}int_{x=-sqrt{1-z^2}}^{x=sqrt{1-z^2}} 1{ dx}{ dy}{ dz} $$



$$= int_{z=-1}^{z=1}int_{y=-sqrt{4-4z^2}}^{y=sqrt{4-4z^2}}2sqrt{1-z^2}{ dy}{ dz}=$$
$$= int_{z=-1}^{z=1}2sqrt{1-z^2}*2sqrt{4-4z^2} { dz}= int_{z=-1}^{z=1}4sqrt{4z^4-8z^2+4} { dz}=int_{z=-1}^{z=1}4sqrt{(2z^2 -2)^2} { dz} = 10frac{2}{3}$$



why did i get negative volume ?
did i do it correctly ? or am i missing something










share|cite|improve this question











$endgroup$












  • $begingroup$
    correct edited *
    $endgroup$
    – Mather
    Dec 15 '18 at 15:12












  • $begingroup$
    The integral looks right to me, and you certainly shouldn't get a negative answer. Please post your calculations, so we can pinpoint the error.
    $endgroup$
    – saulspatz
    Dec 15 '18 at 15:15










  • $begingroup$
    i have posted extended calculation
    $endgroup$
    – Mather
    Dec 15 '18 at 15:28










  • $begingroup$
    I agree up to the very last equal sign. How did you do the last integral? I'm guessing you simplified $sqrt{z^2-1}$ as $z^2-1$ instead of $1-z^2$.
    $endgroup$
    – saulspatz
    Dec 15 '18 at 15:31












  • $begingroup$
    the squrt of $(2z - 2)^2 $ is $ 2z-2 $ so doing the integral it is $ z^3/3 - 2z $
    $endgroup$
    – Mather
    Dec 15 '18 at 15:33
















0












0








0





$begingroup$



let C be the eleptic cylinder C = {$frac{y^2}{4} + z^2leq 1$}.



let D be the cylinder {$x^2 + z^2 leq 1$}
find the volume of intersection of C and D




this is what i did :
$$V = int_{z=-1}^{z=1}int_{y=-sqrt{4-4z^2}}^{y=sqrt{4-4z^2}}int_{x=-sqrt{1-z^2}}^{x=sqrt{1-z^2}} 1{ dx}{ dy}{ dz} $$



$$= int_{z=-1}^{z=1}int_{y=-sqrt{4-4z^2}}^{y=sqrt{4-4z^2}}2sqrt{1-z^2}{ dy}{ dz}=$$
$$= int_{z=-1}^{z=1}2sqrt{1-z^2}*2sqrt{4-4z^2} { dz}= int_{z=-1}^{z=1}4sqrt{4z^4-8z^2+4} { dz}=int_{z=-1}^{z=1}4sqrt{(2z^2 -2)^2} { dz} = 10frac{2}{3}$$



why did i get negative volume ?
did i do it correctly ? or am i missing something










share|cite|improve this question











$endgroup$





let C be the eleptic cylinder C = {$frac{y^2}{4} + z^2leq 1$}.



let D be the cylinder {$x^2 + z^2 leq 1$}
find the volume of intersection of C and D




this is what i did :
$$V = int_{z=-1}^{z=1}int_{y=-sqrt{4-4z^2}}^{y=sqrt{4-4z^2}}int_{x=-sqrt{1-z^2}}^{x=sqrt{1-z^2}} 1{ dx}{ dy}{ dz} $$



$$= int_{z=-1}^{z=1}int_{y=-sqrt{4-4z^2}}^{y=sqrt{4-4z^2}}2sqrt{1-z^2}{ dy}{ dz}=$$
$$= int_{z=-1}^{z=1}2sqrt{1-z^2}*2sqrt{4-4z^2} { dz}= int_{z=-1}^{z=1}4sqrt{4z^4-8z^2+4} { dz}=int_{z=-1}^{z=1}4sqrt{(2z^2 -2)^2} { dz} = 10frac{2}{3}$$



why did i get negative volume ?
did i do it correctly ? or am i missing something







integration multivariable-calculus






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 15 '18 at 15:43







Mather

















asked Dec 15 '18 at 15:07









Mather Mather

3317




3317












  • $begingroup$
    correct edited *
    $endgroup$
    – Mather
    Dec 15 '18 at 15:12












  • $begingroup$
    The integral looks right to me, and you certainly shouldn't get a negative answer. Please post your calculations, so we can pinpoint the error.
    $endgroup$
    – saulspatz
    Dec 15 '18 at 15:15










  • $begingroup$
    i have posted extended calculation
    $endgroup$
    – Mather
    Dec 15 '18 at 15:28










  • $begingroup$
    I agree up to the very last equal sign. How did you do the last integral? I'm guessing you simplified $sqrt{z^2-1}$ as $z^2-1$ instead of $1-z^2$.
    $endgroup$
    – saulspatz
    Dec 15 '18 at 15:31












  • $begingroup$
    the squrt of $(2z - 2)^2 $ is $ 2z-2 $ so doing the integral it is $ z^3/3 - 2z $
    $endgroup$
    – Mather
    Dec 15 '18 at 15:33




















  • $begingroup$
    correct edited *
    $endgroup$
    – Mather
    Dec 15 '18 at 15:12












  • $begingroup$
    The integral looks right to me, and you certainly shouldn't get a negative answer. Please post your calculations, so we can pinpoint the error.
    $endgroup$
    – saulspatz
    Dec 15 '18 at 15:15










  • $begingroup$
    i have posted extended calculation
    $endgroup$
    – Mather
    Dec 15 '18 at 15:28










  • $begingroup$
    I agree up to the very last equal sign. How did you do the last integral? I'm guessing you simplified $sqrt{z^2-1}$ as $z^2-1$ instead of $1-z^2$.
    $endgroup$
    – saulspatz
    Dec 15 '18 at 15:31












  • $begingroup$
    the squrt of $(2z - 2)^2 $ is $ 2z-2 $ so doing the integral it is $ z^3/3 - 2z $
    $endgroup$
    – Mather
    Dec 15 '18 at 15:33


















$begingroup$
correct edited *
$endgroup$
– Mather
Dec 15 '18 at 15:12






$begingroup$
correct edited *
$endgroup$
– Mather
Dec 15 '18 at 15:12














$begingroup$
The integral looks right to me, and you certainly shouldn't get a negative answer. Please post your calculations, so we can pinpoint the error.
$endgroup$
– saulspatz
Dec 15 '18 at 15:15




$begingroup$
The integral looks right to me, and you certainly shouldn't get a negative answer. Please post your calculations, so we can pinpoint the error.
$endgroup$
– saulspatz
Dec 15 '18 at 15:15












$begingroup$
i have posted extended calculation
$endgroup$
– Mather
Dec 15 '18 at 15:28




$begingroup$
i have posted extended calculation
$endgroup$
– Mather
Dec 15 '18 at 15:28












$begingroup$
I agree up to the very last equal sign. How did you do the last integral? I'm guessing you simplified $sqrt{z^2-1}$ as $z^2-1$ instead of $1-z^2$.
$endgroup$
– saulspatz
Dec 15 '18 at 15:31






$begingroup$
I agree up to the very last equal sign. How did you do the last integral? I'm guessing you simplified $sqrt{z^2-1}$ as $z^2-1$ instead of $1-z^2$.
$endgroup$
– saulspatz
Dec 15 '18 at 15:31














$begingroup$
the squrt of $(2z - 2)^2 $ is $ 2z-2 $ so doing the integral it is $ z^3/3 - 2z $
$endgroup$
– Mather
Dec 15 '18 at 15:33






$begingroup$
the squrt of $(2z - 2)^2 $ is $ 2z-2 $ so doing the integral it is $ z^3/3 - 2z $
$endgroup$
– Mather
Dec 15 '18 at 15:33












1 Answer
1






active

oldest

votes


















1












$begingroup$

You are correct up to the last integral. Recall that $sqrt{z^2}=|z|,$ so $sqrt{(z^2-1)^2}=|z^2-1|$ When $-1le zle1,$ we have $|z^2-1|=1-z^2,$ so you've got the sign wrong.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    oh i got it now thank you
    $endgroup$
    – Mather
    Dec 15 '18 at 15:38










  • $begingroup$
    It was my pleasure.
    $endgroup$
    – saulspatz
    Dec 15 '18 at 15:40











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3041581%2fhow-to-find-the-volume-of-intersection-between-eleptic-cylinder-and-cylinder%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









1












$begingroup$

You are correct up to the last integral. Recall that $sqrt{z^2}=|z|,$ so $sqrt{(z^2-1)^2}=|z^2-1|$ When $-1le zle1,$ we have $|z^2-1|=1-z^2,$ so you've got the sign wrong.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    oh i got it now thank you
    $endgroup$
    – Mather
    Dec 15 '18 at 15:38










  • $begingroup$
    It was my pleasure.
    $endgroup$
    – saulspatz
    Dec 15 '18 at 15:40
















1












$begingroup$

You are correct up to the last integral. Recall that $sqrt{z^2}=|z|,$ so $sqrt{(z^2-1)^2}=|z^2-1|$ When $-1le zle1,$ we have $|z^2-1|=1-z^2,$ so you've got the sign wrong.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    oh i got it now thank you
    $endgroup$
    – Mather
    Dec 15 '18 at 15:38










  • $begingroup$
    It was my pleasure.
    $endgroup$
    – saulspatz
    Dec 15 '18 at 15:40














1












1








1





$begingroup$

You are correct up to the last integral. Recall that $sqrt{z^2}=|z|,$ so $sqrt{(z^2-1)^2}=|z^2-1|$ When $-1le zle1,$ we have $|z^2-1|=1-z^2,$ so you've got the sign wrong.






share|cite|improve this answer









$endgroup$



You are correct up to the last integral. Recall that $sqrt{z^2}=|z|,$ so $sqrt{(z^2-1)^2}=|z^2-1|$ When $-1le zle1,$ we have $|z^2-1|=1-z^2,$ so you've got the sign wrong.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Dec 15 '18 at 15:37









saulspatzsaulspatz

15.1k31330




15.1k31330












  • $begingroup$
    oh i got it now thank you
    $endgroup$
    – Mather
    Dec 15 '18 at 15:38










  • $begingroup$
    It was my pleasure.
    $endgroup$
    – saulspatz
    Dec 15 '18 at 15:40


















  • $begingroup$
    oh i got it now thank you
    $endgroup$
    – Mather
    Dec 15 '18 at 15:38










  • $begingroup$
    It was my pleasure.
    $endgroup$
    – saulspatz
    Dec 15 '18 at 15:40
















$begingroup$
oh i got it now thank you
$endgroup$
– Mather
Dec 15 '18 at 15:38




$begingroup$
oh i got it now thank you
$endgroup$
– Mather
Dec 15 '18 at 15:38












$begingroup$
It was my pleasure.
$endgroup$
– saulspatz
Dec 15 '18 at 15:40




$begingroup$
It was my pleasure.
$endgroup$
– saulspatz
Dec 15 '18 at 15:40


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3041581%2fhow-to-find-the-volume-of-intersection-between-eleptic-cylinder-and-cylinder%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Ellipse (mathématiques)

Quarter-circle Tiles

Mont Emei