Prove the inequality $int^{3}_{-3}left|f(t) right|dtleq sqrt{6} left( int^{3}_{-3}left|f(t) right|^2dt right)...












2












$begingroup$


I want to prove the inequality



begin{align} int^{3}_{-3}left|f(t) right|dtleq sqrt{6} left( int^{3}_{-3}left|f(t) right|^2dt right) ^{1/2}end{align}



Actually, I don't know where to start. However, does it have anything to with the Cauchy Schwarz Inequality for Integrals? Please, I need your help!










share|cite|improve this question









$endgroup$








  • 5




    $begingroup$
    Cauchy-Schwarz should work if you work with $1cdot |f(t)|$.
    $endgroup$
    – Michael Burr
    Dec 15 '18 at 13:17








  • 1




    $begingroup$
    $ sqrt{6}=left(int_{-3}^31^2 dtright)^{1/2} $
    $endgroup$
    – user587192
    Dec 16 '18 at 14:21
















2












$begingroup$


I want to prove the inequality



begin{align} int^{3}_{-3}left|f(t) right|dtleq sqrt{6} left( int^{3}_{-3}left|f(t) right|^2dt right) ^{1/2}end{align}



Actually, I don't know where to start. However, does it have anything to with the Cauchy Schwarz Inequality for Integrals? Please, I need your help!










share|cite|improve this question









$endgroup$








  • 5




    $begingroup$
    Cauchy-Schwarz should work if you work with $1cdot |f(t)|$.
    $endgroup$
    – Michael Burr
    Dec 15 '18 at 13:17








  • 1




    $begingroup$
    $ sqrt{6}=left(int_{-3}^31^2 dtright)^{1/2} $
    $endgroup$
    – user587192
    Dec 16 '18 at 14:21














2












2








2


1



$begingroup$


I want to prove the inequality



begin{align} int^{3}_{-3}left|f(t) right|dtleq sqrt{6} left( int^{3}_{-3}left|f(t) right|^2dt right) ^{1/2}end{align}



Actually, I don't know where to start. However, does it have anything to with the Cauchy Schwarz Inequality for Integrals? Please, I need your help!










share|cite|improve this question









$endgroup$




I want to prove the inequality



begin{align} int^{3}_{-3}left|f(t) right|dtleq sqrt{6} left( int^{3}_{-3}left|f(t) right|^2dt right) ^{1/2}end{align}



Actually, I don't know where to start. However, does it have anything to with the Cauchy Schwarz Inequality for Integrals? Please, I need your help!







integration functional-analysis analysis






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Dec 15 '18 at 13:15









Omojola MichealOmojola Micheal

1,853324




1,853324








  • 5




    $begingroup$
    Cauchy-Schwarz should work if you work with $1cdot |f(t)|$.
    $endgroup$
    – Michael Burr
    Dec 15 '18 at 13:17








  • 1




    $begingroup$
    $ sqrt{6}=left(int_{-3}^31^2 dtright)^{1/2} $
    $endgroup$
    – user587192
    Dec 16 '18 at 14:21














  • 5




    $begingroup$
    Cauchy-Schwarz should work if you work with $1cdot |f(t)|$.
    $endgroup$
    – Michael Burr
    Dec 15 '18 at 13:17








  • 1




    $begingroup$
    $ sqrt{6}=left(int_{-3}^31^2 dtright)^{1/2} $
    $endgroup$
    – user587192
    Dec 16 '18 at 14:21








5




5




$begingroup$
Cauchy-Schwarz should work if you work with $1cdot |f(t)|$.
$endgroup$
– Michael Burr
Dec 15 '18 at 13:17






$begingroup$
Cauchy-Schwarz should work if you work with $1cdot |f(t)|$.
$endgroup$
– Michael Burr
Dec 15 '18 at 13:17






1




1




$begingroup$
$ sqrt{6}=left(int_{-3}^31^2 dtright)^{1/2} $
$endgroup$
– user587192
Dec 16 '18 at 14:21




$begingroup$
$ sqrt{6}=left(int_{-3}^31^2 dtright)^{1/2} $
$endgroup$
– user587192
Dec 16 '18 at 14:21










1 Answer
1






active

oldest

votes


















3












$begingroup$

Recall that the Cauchy-Schwarz says that $int|fg|dx le sqrt{int |f|^2dxint|g|^2dx}$. Consider $g=mathbf 1_Omega$, where
$$
mathbf 1_Omega(x):=begin{cases}1 &; xinOmega \
0 &;xne Omega.
end{cases}
$$

Here you have $Omega=[-3,3]$. Can you finish the proof?






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3040503%2fprove-the-inequality-int3-3-leftft-rightdt-leq-sqrt6-left-int%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    3












    $begingroup$

    Recall that the Cauchy-Schwarz says that $int|fg|dx le sqrt{int |f|^2dxint|g|^2dx}$. Consider $g=mathbf 1_Omega$, where
    $$
    mathbf 1_Omega(x):=begin{cases}1 &; xinOmega \
    0 &;xne Omega.
    end{cases}
    $$

    Here you have $Omega=[-3,3]$. Can you finish the proof?






    share|cite|improve this answer









    $endgroup$


















      3












      $begingroup$

      Recall that the Cauchy-Schwarz says that $int|fg|dx le sqrt{int |f|^2dxint|g|^2dx}$. Consider $g=mathbf 1_Omega$, where
      $$
      mathbf 1_Omega(x):=begin{cases}1 &; xinOmega \
      0 &;xne Omega.
      end{cases}
      $$

      Here you have $Omega=[-3,3]$. Can you finish the proof?






      share|cite|improve this answer









      $endgroup$
















        3












        3








        3





        $begingroup$

        Recall that the Cauchy-Schwarz says that $int|fg|dx le sqrt{int |f|^2dxint|g|^2dx}$. Consider $g=mathbf 1_Omega$, where
        $$
        mathbf 1_Omega(x):=begin{cases}1 &; xinOmega \
        0 &;xne Omega.
        end{cases}
        $$

        Here you have $Omega=[-3,3]$. Can you finish the proof?






        share|cite|improve this answer









        $endgroup$



        Recall that the Cauchy-Schwarz says that $int|fg|dx le sqrt{int |f|^2dxint|g|^2dx}$. Consider $g=mathbf 1_Omega$, where
        $$
        mathbf 1_Omega(x):=begin{cases}1 &; xinOmega \
        0 &;xne Omega.
        end{cases}
        $$

        Here you have $Omega=[-3,3]$. Can you finish the proof?







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Dec 16 '18 at 14:15









        BigbearZzzBigbearZzz

        8,69121652




        8,69121652






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3040503%2fprove-the-inequality-int3-3-leftft-rightdt-leq-sqrt6-left-int%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Ellipse (mathématiques)

            Quarter-circle Tiles

            Mont Emei