Prove the inequality $int^{3}_{-3}left|f(t) right|dtleq sqrt{6} left( int^{3}_{-3}left|f(t) right|^2dt right)...
$begingroup$
I want to prove the inequality
begin{align} int^{3}_{-3}left|f(t) right|dtleq sqrt{6} left( int^{3}_{-3}left|f(t) right|^2dt right) ^{1/2}end{align}
Actually, I don't know where to start. However, does it have anything to with the Cauchy Schwarz Inequality for Integrals? Please, I need your help!
integration functional-analysis analysis
$endgroup$
add a comment |
$begingroup$
I want to prove the inequality
begin{align} int^{3}_{-3}left|f(t) right|dtleq sqrt{6} left( int^{3}_{-3}left|f(t) right|^2dt right) ^{1/2}end{align}
Actually, I don't know where to start. However, does it have anything to with the Cauchy Schwarz Inequality for Integrals? Please, I need your help!
integration functional-analysis analysis
$endgroup$
5
$begingroup$
Cauchy-Schwarz should work if you work with $1cdot |f(t)|$.
$endgroup$
– Michael Burr
Dec 15 '18 at 13:17
1
$begingroup$
$ sqrt{6}=left(int_{-3}^31^2 dtright)^{1/2} $
$endgroup$
– user587192
Dec 16 '18 at 14:21
add a comment |
$begingroup$
I want to prove the inequality
begin{align} int^{3}_{-3}left|f(t) right|dtleq sqrt{6} left( int^{3}_{-3}left|f(t) right|^2dt right) ^{1/2}end{align}
Actually, I don't know where to start. However, does it have anything to with the Cauchy Schwarz Inequality for Integrals? Please, I need your help!
integration functional-analysis analysis
$endgroup$
I want to prove the inequality
begin{align} int^{3}_{-3}left|f(t) right|dtleq sqrt{6} left( int^{3}_{-3}left|f(t) right|^2dt right) ^{1/2}end{align}
Actually, I don't know where to start. However, does it have anything to with the Cauchy Schwarz Inequality for Integrals? Please, I need your help!
integration functional-analysis analysis
integration functional-analysis analysis
asked Dec 15 '18 at 13:15
Omojola MichealOmojola Micheal
1,853324
1,853324
5
$begingroup$
Cauchy-Schwarz should work if you work with $1cdot |f(t)|$.
$endgroup$
– Michael Burr
Dec 15 '18 at 13:17
1
$begingroup$
$ sqrt{6}=left(int_{-3}^31^2 dtright)^{1/2} $
$endgroup$
– user587192
Dec 16 '18 at 14:21
add a comment |
5
$begingroup$
Cauchy-Schwarz should work if you work with $1cdot |f(t)|$.
$endgroup$
– Michael Burr
Dec 15 '18 at 13:17
1
$begingroup$
$ sqrt{6}=left(int_{-3}^31^2 dtright)^{1/2} $
$endgroup$
– user587192
Dec 16 '18 at 14:21
5
5
$begingroup$
Cauchy-Schwarz should work if you work with $1cdot |f(t)|$.
$endgroup$
– Michael Burr
Dec 15 '18 at 13:17
$begingroup$
Cauchy-Schwarz should work if you work with $1cdot |f(t)|$.
$endgroup$
– Michael Burr
Dec 15 '18 at 13:17
1
1
$begingroup$
$ sqrt{6}=left(int_{-3}^31^2 dtright)^{1/2} $
$endgroup$
– user587192
Dec 16 '18 at 14:21
$begingroup$
$ sqrt{6}=left(int_{-3}^31^2 dtright)^{1/2} $
$endgroup$
– user587192
Dec 16 '18 at 14:21
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Recall that the Cauchy-Schwarz says that $int|fg|dx le sqrt{int |f|^2dxint|g|^2dx}$. Consider $g=mathbf 1_Omega$, where
$$
mathbf 1_Omega(x):=begin{cases}1 &; xinOmega \
0 &;xne Omega.
end{cases}
$$
Here you have $Omega=[-3,3]$. Can you finish the proof?
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3040503%2fprove-the-inequality-int3-3-leftft-rightdt-leq-sqrt6-left-int%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Recall that the Cauchy-Schwarz says that $int|fg|dx le sqrt{int |f|^2dxint|g|^2dx}$. Consider $g=mathbf 1_Omega$, where
$$
mathbf 1_Omega(x):=begin{cases}1 &; xinOmega \
0 &;xne Omega.
end{cases}
$$
Here you have $Omega=[-3,3]$. Can you finish the proof?
$endgroup$
add a comment |
$begingroup$
Recall that the Cauchy-Schwarz says that $int|fg|dx le sqrt{int |f|^2dxint|g|^2dx}$. Consider $g=mathbf 1_Omega$, where
$$
mathbf 1_Omega(x):=begin{cases}1 &; xinOmega \
0 &;xne Omega.
end{cases}
$$
Here you have $Omega=[-3,3]$. Can you finish the proof?
$endgroup$
add a comment |
$begingroup$
Recall that the Cauchy-Schwarz says that $int|fg|dx le sqrt{int |f|^2dxint|g|^2dx}$. Consider $g=mathbf 1_Omega$, where
$$
mathbf 1_Omega(x):=begin{cases}1 &; xinOmega \
0 &;xne Omega.
end{cases}
$$
Here you have $Omega=[-3,3]$. Can you finish the proof?
$endgroup$
Recall that the Cauchy-Schwarz says that $int|fg|dx le sqrt{int |f|^2dxint|g|^2dx}$. Consider $g=mathbf 1_Omega$, where
$$
mathbf 1_Omega(x):=begin{cases}1 &; xinOmega \
0 &;xne Omega.
end{cases}
$$
Here you have $Omega=[-3,3]$. Can you finish the proof?
answered Dec 16 '18 at 14:15
BigbearZzzBigbearZzz
8,69121652
8,69121652
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3040503%2fprove-the-inequality-int3-3-leftft-rightdt-leq-sqrt6-left-int%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
5
$begingroup$
Cauchy-Schwarz should work if you work with $1cdot |f(t)|$.
$endgroup$
– Michael Burr
Dec 15 '18 at 13:17
1
$begingroup$
$ sqrt{6}=left(int_{-3}^31^2 dtright)^{1/2} $
$endgroup$
– user587192
Dec 16 '18 at 14:21