Limit $lim_{(x, y) to (infty, infty)} frac{x+sqrt{y}}{x^2+y}$












2












$begingroup$


Show whether the limit exists and find it, or prove that it does not.
$$lim_{(x, y) to(infty,infty)}frac{x+sqrt{y}}{x^2+y}$$
WolframAlpha shows that limit does not exist, however, I do fail to conclude so.
$$lim_{(x, y) to(infty,infty)}frac{x+sqrt{y}}{x^2+y} = [x=rcostheta, y = rsintheta] = lim_{rtoinfty}frac{rcostheta+sqrt{rsintheta}}{r^2cos^2theta+rsintheta} = lim_{rtoinfty}frac{costhetafrac{sqrt{sintheta}}{sqrt{r}}}{rcos^2theta+sintheta} = 0.$$
Having gotten the exact results for whatever the substitution is made (such as $y = x, y = x^2, [x = t^2, y = t])$, my conclusion is that limit does exist and equals $0.$



Did I miss something?










share|cite|improve this question









$endgroup$












  • $begingroup$
    Can you link to the WA calculation, or provide the exact formula you typed in there?
    $endgroup$
    – Barry Cipra
    Dec 15 '18 at 13:53
















2












$begingroup$


Show whether the limit exists and find it, or prove that it does not.
$$lim_{(x, y) to(infty,infty)}frac{x+sqrt{y}}{x^2+y}$$
WolframAlpha shows that limit does not exist, however, I do fail to conclude so.
$$lim_{(x, y) to(infty,infty)}frac{x+sqrt{y}}{x^2+y} = [x=rcostheta, y = rsintheta] = lim_{rtoinfty}frac{rcostheta+sqrt{rsintheta}}{r^2cos^2theta+rsintheta} = lim_{rtoinfty}frac{costhetafrac{sqrt{sintheta}}{sqrt{r}}}{rcos^2theta+sintheta} = 0.$$
Having gotten the exact results for whatever the substitution is made (such as $y = x, y = x^2, [x = t^2, y = t])$, my conclusion is that limit does exist and equals $0.$



Did I miss something?










share|cite|improve this question









$endgroup$












  • $begingroup$
    Can you link to the WA calculation, or provide the exact formula you typed in there?
    $endgroup$
    – Barry Cipra
    Dec 15 '18 at 13:53














2












2








2





$begingroup$


Show whether the limit exists and find it, or prove that it does not.
$$lim_{(x, y) to(infty,infty)}frac{x+sqrt{y}}{x^2+y}$$
WolframAlpha shows that limit does not exist, however, I do fail to conclude so.
$$lim_{(x, y) to(infty,infty)}frac{x+sqrt{y}}{x^2+y} = [x=rcostheta, y = rsintheta] = lim_{rtoinfty}frac{rcostheta+sqrt{rsintheta}}{r^2cos^2theta+rsintheta} = lim_{rtoinfty}frac{costhetafrac{sqrt{sintheta}}{sqrt{r}}}{rcos^2theta+sintheta} = 0.$$
Having gotten the exact results for whatever the substitution is made (such as $y = x, y = x^2, [x = t^2, y = t])$, my conclusion is that limit does exist and equals $0.$



Did I miss something?










share|cite|improve this question









$endgroup$




Show whether the limit exists and find it, or prove that it does not.
$$lim_{(x, y) to(infty,infty)}frac{x+sqrt{y}}{x^2+y}$$
WolframAlpha shows that limit does not exist, however, I do fail to conclude so.
$$lim_{(x, y) to(infty,infty)}frac{x+sqrt{y}}{x^2+y} = [x=rcostheta, y = rsintheta] = lim_{rtoinfty}frac{rcostheta+sqrt{rsintheta}}{r^2cos^2theta+rsintheta} = lim_{rtoinfty}frac{costhetafrac{sqrt{sintheta}}{sqrt{r}}}{rcos^2theta+sintheta} = 0.$$
Having gotten the exact results for whatever the substitution is made (such as $y = x, y = x^2, [x = t^2, y = t])$, my conclusion is that limit does exist and equals $0.$



Did I miss something?







limits multivariable-calculus






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Dec 15 '18 at 12:54









H. BaoH. Bao

474




474












  • $begingroup$
    Can you link to the WA calculation, or provide the exact formula you typed in there?
    $endgroup$
    – Barry Cipra
    Dec 15 '18 at 13:53


















  • $begingroup$
    Can you link to the WA calculation, or provide the exact formula you typed in there?
    $endgroup$
    – Barry Cipra
    Dec 15 '18 at 13:53
















$begingroup$
Can you link to the WA calculation, or provide the exact formula you typed in there?
$endgroup$
– Barry Cipra
Dec 15 '18 at 13:53




$begingroup$
Can you link to the WA calculation, or provide the exact formula you typed in there?
$endgroup$
– Barry Cipra
Dec 15 '18 at 13:53










4 Answers
4






active

oldest

votes


















1












$begingroup$

By $x=u$ and $y=v^2$ the limit becomes



$$lim_{(x, y) to (infty, infty)} frac{x+sqrt{y}}{x^2+y}=lim_{(u,v) to (infty, infty)} frac{u+v}{u^2+v^2}=0$$



indeed for example by polar coordinates



$$frac{u+v}{u^2+v^2}=frac1r(cos theta +sin theta)to 0$$






share|cite|improve this answer









$endgroup$





















    3












    $begingroup$

    For $x,ygt0$, we have



    $$begin{align}
    {x+sqrt yover x^2+y}
    &={xover x^2+y}+{sqrt yover x^2+y}\
    &le{xover x^2}+{sqrt yover y}\
    &={1over x}+{1oversqrt y}\
    &to0+0
    end{align}$$



    The key step here uses the fact that a smaller denominator makes for a larger fraction.






    share|cite|improve this answer











    $endgroup$





















      2












      $begingroup$

      It is enough to observe that, if $ygeq 0$,
      $$
      x^2 + y geq frac{1}{2} (|x| +sqrt{y})^2,
      $$

      so that
      $$
      left|frac{x+sqrt{y}}{x^2+y}right|
      leqfrac{|x|+sqrt{y}}{x^2+y}leq frac{2}{|x|+sqrt{y}}.
      $$






      share|cite|improve this answer









      $endgroup$





















        0












        $begingroup$

        Since $(x,y)rightarrow (infty,infty),$ assume $x,y>0.$ $$0<frac{x+sqrt{y}}{x^2+y}=frac{xsqrt {y}left(frac{1}{sqrt y}+frac 1xright)}{xsqrt {y}left(frac{x}{sqrt y}+frac {sqrt y}{x}right)}leq
        frac{frac{1}{sqrt y}+frac 1x}{2} rightarrow 0$$

        as $frac ab + frac ba geq 2$ for $a,b>0.$ Thus by the squeeze theorem is our limit $0.$






        share|cite|improve this answer











        $endgroup$













          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3040482%2flimit-lim-x-y-to-infty-infty-fracx-sqrtyx2y%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          4 Answers
          4






          active

          oldest

          votes








          4 Answers
          4






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          1












          $begingroup$

          By $x=u$ and $y=v^2$ the limit becomes



          $$lim_{(x, y) to (infty, infty)} frac{x+sqrt{y}}{x^2+y}=lim_{(u,v) to (infty, infty)} frac{u+v}{u^2+v^2}=0$$



          indeed for example by polar coordinates



          $$frac{u+v}{u^2+v^2}=frac1r(cos theta +sin theta)to 0$$






          share|cite|improve this answer









          $endgroup$


















            1












            $begingroup$

            By $x=u$ and $y=v^2$ the limit becomes



            $$lim_{(x, y) to (infty, infty)} frac{x+sqrt{y}}{x^2+y}=lim_{(u,v) to (infty, infty)} frac{u+v}{u^2+v^2}=0$$



            indeed for example by polar coordinates



            $$frac{u+v}{u^2+v^2}=frac1r(cos theta +sin theta)to 0$$






            share|cite|improve this answer









            $endgroup$
















              1












              1








              1





              $begingroup$

              By $x=u$ and $y=v^2$ the limit becomes



              $$lim_{(x, y) to (infty, infty)} frac{x+sqrt{y}}{x^2+y}=lim_{(u,v) to (infty, infty)} frac{u+v}{u^2+v^2}=0$$



              indeed for example by polar coordinates



              $$frac{u+v}{u^2+v^2}=frac1r(cos theta +sin theta)to 0$$






              share|cite|improve this answer









              $endgroup$



              By $x=u$ and $y=v^2$ the limit becomes



              $$lim_{(x, y) to (infty, infty)} frac{x+sqrt{y}}{x^2+y}=lim_{(u,v) to (infty, infty)} frac{u+v}{u^2+v^2}=0$$



              indeed for example by polar coordinates



              $$frac{u+v}{u^2+v^2}=frac1r(cos theta +sin theta)to 0$$







              share|cite|improve this answer












              share|cite|improve this answer



              share|cite|improve this answer










              answered Dec 15 '18 at 13:46









              gimusigimusi

              92.8k84494




              92.8k84494























                  3












                  $begingroup$

                  For $x,ygt0$, we have



                  $$begin{align}
                  {x+sqrt yover x^2+y}
                  &={xover x^2+y}+{sqrt yover x^2+y}\
                  &le{xover x^2}+{sqrt yover y}\
                  &={1over x}+{1oversqrt y}\
                  &to0+0
                  end{align}$$



                  The key step here uses the fact that a smaller denominator makes for a larger fraction.






                  share|cite|improve this answer











                  $endgroup$


















                    3












                    $begingroup$

                    For $x,ygt0$, we have



                    $$begin{align}
                    {x+sqrt yover x^2+y}
                    &={xover x^2+y}+{sqrt yover x^2+y}\
                    &le{xover x^2}+{sqrt yover y}\
                    &={1over x}+{1oversqrt y}\
                    &to0+0
                    end{align}$$



                    The key step here uses the fact that a smaller denominator makes for a larger fraction.






                    share|cite|improve this answer











                    $endgroup$
















                      3












                      3








                      3





                      $begingroup$

                      For $x,ygt0$, we have



                      $$begin{align}
                      {x+sqrt yover x^2+y}
                      &={xover x^2+y}+{sqrt yover x^2+y}\
                      &le{xover x^2}+{sqrt yover y}\
                      &={1over x}+{1oversqrt y}\
                      &to0+0
                      end{align}$$



                      The key step here uses the fact that a smaller denominator makes for a larger fraction.






                      share|cite|improve this answer











                      $endgroup$



                      For $x,ygt0$, we have



                      $$begin{align}
                      {x+sqrt yover x^2+y}
                      &={xover x^2+y}+{sqrt yover x^2+y}\
                      &le{xover x^2}+{sqrt yover y}\
                      &={1over x}+{1oversqrt y}\
                      &to0+0
                      end{align}$$



                      The key step here uses the fact that a smaller denominator makes for a larger fraction.







                      share|cite|improve this answer














                      share|cite|improve this answer



                      share|cite|improve this answer








                      edited Dec 15 '18 at 14:54

























                      answered Dec 15 '18 at 13:52









                      Barry CipraBarry Cipra

                      59.6k653126




                      59.6k653126























                          2












                          $begingroup$

                          It is enough to observe that, if $ygeq 0$,
                          $$
                          x^2 + y geq frac{1}{2} (|x| +sqrt{y})^2,
                          $$

                          so that
                          $$
                          left|frac{x+sqrt{y}}{x^2+y}right|
                          leqfrac{|x|+sqrt{y}}{x^2+y}leq frac{2}{|x|+sqrt{y}}.
                          $$






                          share|cite|improve this answer









                          $endgroup$


















                            2












                            $begingroup$

                            It is enough to observe that, if $ygeq 0$,
                            $$
                            x^2 + y geq frac{1}{2} (|x| +sqrt{y})^2,
                            $$

                            so that
                            $$
                            left|frac{x+sqrt{y}}{x^2+y}right|
                            leqfrac{|x|+sqrt{y}}{x^2+y}leq frac{2}{|x|+sqrt{y}}.
                            $$






                            share|cite|improve this answer









                            $endgroup$
















                              2












                              2








                              2





                              $begingroup$

                              It is enough to observe that, if $ygeq 0$,
                              $$
                              x^2 + y geq frac{1}{2} (|x| +sqrt{y})^2,
                              $$

                              so that
                              $$
                              left|frac{x+sqrt{y}}{x^2+y}right|
                              leqfrac{|x|+sqrt{y}}{x^2+y}leq frac{2}{|x|+sqrt{y}}.
                              $$






                              share|cite|improve this answer









                              $endgroup$



                              It is enough to observe that, if $ygeq 0$,
                              $$
                              x^2 + y geq frac{1}{2} (|x| +sqrt{y})^2,
                              $$

                              so that
                              $$
                              left|frac{x+sqrt{y}}{x^2+y}right|
                              leqfrac{|x|+sqrt{y}}{x^2+y}leq frac{2}{|x|+sqrt{y}}.
                              $$







                              share|cite|improve this answer












                              share|cite|improve this answer



                              share|cite|improve this answer










                              answered Dec 15 '18 at 13:14









                              RigelRigel

                              11.2k11320




                              11.2k11320























                                  0












                                  $begingroup$

                                  Since $(x,y)rightarrow (infty,infty),$ assume $x,y>0.$ $$0<frac{x+sqrt{y}}{x^2+y}=frac{xsqrt {y}left(frac{1}{sqrt y}+frac 1xright)}{xsqrt {y}left(frac{x}{sqrt y}+frac {sqrt y}{x}right)}leq
                                  frac{frac{1}{sqrt y}+frac 1x}{2} rightarrow 0$$

                                  as $frac ab + frac ba geq 2$ for $a,b>0.$ Thus by the squeeze theorem is our limit $0.$






                                  share|cite|improve this answer











                                  $endgroup$


















                                    0












                                    $begingroup$

                                    Since $(x,y)rightarrow (infty,infty),$ assume $x,y>0.$ $$0<frac{x+sqrt{y}}{x^2+y}=frac{xsqrt {y}left(frac{1}{sqrt y}+frac 1xright)}{xsqrt {y}left(frac{x}{sqrt y}+frac {sqrt y}{x}right)}leq
                                    frac{frac{1}{sqrt y}+frac 1x}{2} rightarrow 0$$

                                    as $frac ab + frac ba geq 2$ for $a,b>0.$ Thus by the squeeze theorem is our limit $0.$






                                    share|cite|improve this answer











                                    $endgroup$
















                                      0












                                      0








                                      0





                                      $begingroup$

                                      Since $(x,y)rightarrow (infty,infty),$ assume $x,y>0.$ $$0<frac{x+sqrt{y}}{x^2+y}=frac{xsqrt {y}left(frac{1}{sqrt y}+frac 1xright)}{xsqrt {y}left(frac{x}{sqrt y}+frac {sqrt y}{x}right)}leq
                                      frac{frac{1}{sqrt y}+frac 1x}{2} rightarrow 0$$

                                      as $frac ab + frac ba geq 2$ for $a,b>0.$ Thus by the squeeze theorem is our limit $0.$






                                      share|cite|improve this answer











                                      $endgroup$



                                      Since $(x,y)rightarrow (infty,infty),$ assume $x,y>0.$ $$0<frac{x+sqrt{y}}{x^2+y}=frac{xsqrt {y}left(frac{1}{sqrt y}+frac 1xright)}{xsqrt {y}left(frac{x}{sqrt y}+frac {sqrt y}{x}right)}leq
                                      frac{frac{1}{sqrt y}+frac 1x}{2} rightarrow 0$$

                                      as $frac ab + frac ba geq 2$ for $a,b>0.$ Thus by the squeeze theorem is our limit $0.$







                                      share|cite|improve this answer














                                      share|cite|improve this answer



                                      share|cite|improve this answer








                                      edited Dec 17 '18 at 3:06

























                                      answered Dec 15 '18 at 13:38









                                      user376343user376343

                                      3,7883827




                                      3,7883827






























                                          draft saved

                                          draft discarded




















































                                          Thanks for contributing an answer to Mathematics Stack Exchange!


                                          • Please be sure to answer the question. Provide details and share your research!

                                          But avoid



                                          • Asking for help, clarification, or responding to other answers.

                                          • Making statements based on opinion; back them up with references or personal experience.


                                          Use MathJax to format equations. MathJax reference.


                                          To learn more, see our tips on writing great answers.




                                          draft saved


                                          draft discarded














                                          StackExchange.ready(
                                          function () {
                                          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3040482%2flimit-lim-x-y-to-infty-infty-fracx-sqrtyx2y%23new-answer', 'question_page');
                                          }
                                          );

                                          Post as a guest















                                          Required, but never shown





















































                                          Required, but never shown














                                          Required, but never shown












                                          Required, but never shown







                                          Required, but never shown

































                                          Required, but never shown














                                          Required, but never shown












                                          Required, but never shown







                                          Required, but never shown







                                          Popular posts from this blog

                                          Ellipse (mathématiques)

                                          Quarter-circle Tiles

                                          Mont Emei