$lim_{ntoinfty}frac{sum_{i=1}^ni^{4lambda}}{Big(sum_{i=1}^ni^{2lambda}Big)^2}=0$
$begingroup$
Is it true that $forall lambda>0$ $$lim_{ntoinfty}frac{sum_{i=1}^ni^{4lambda}}{Big(sum_{i=1}^ni^{2lambda}Big)^2}=0$$
I cannot find a way to prove it, nor can I find a counterexample.
Any help is greatly appreciated!
limits sums-of-squares gauss-sums
$endgroup$
add a comment |
$begingroup$
Is it true that $forall lambda>0$ $$lim_{ntoinfty}frac{sum_{i=1}^ni^{4lambda}}{Big(sum_{i=1}^ni^{2lambda}Big)^2}=0$$
I cannot find a way to prove it, nor can I find a counterexample.
Any help is greatly appreciated!
limits sums-of-squares gauss-sums
$endgroup$
4
$begingroup$
For $k>0$, $$sum_{i=1}^n i^ksimfrac{n^{k+1}}{k+1}.$$
$endgroup$
– Lord Shark the Unknown
Dec 15 '18 at 15:10
1
$begingroup$
To calculate, use Cesàro--Stolz theorem.
$endgroup$
– xbh
Dec 15 '18 at 15:30
add a comment |
$begingroup$
Is it true that $forall lambda>0$ $$lim_{ntoinfty}frac{sum_{i=1}^ni^{4lambda}}{Big(sum_{i=1}^ni^{2lambda}Big)^2}=0$$
I cannot find a way to prove it, nor can I find a counterexample.
Any help is greatly appreciated!
limits sums-of-squares gauss-sums
$endgroup$
Is it true that $forall lambda>0$ $$lim_{ntoinfty}frac{sum_{i=1}^ni^{4lambda}}{Big(sum_{i=1}^ni^{2lambda}Big)^2}=0$$
I cannot find a way to prove it, nor can I find a counterexample.
Any help is greatly appreciated!
limits sums-of-squares gauss-sums
limits sums-of-squares gauss-sums
asked Dec 15 '18 at 15:07
newbienewbie
313212
313212
4
$begingroup$
For $k>0$, $$sum_{i=1}^n i^ksimfrac{n^{k+1}}{k+1}.$$
$endgroup$
– Lord Shark the Unknown
Dec 15 '18 at 15:10
1
$begingroup$
To calculate, use Cesàro--Stolz theorem.
$endgroup$
– xbh
Dec 15 '18 at 15:30
add a comment |
4
$begingroup$
For $k>0$, $$sum_{i=1}^n i^ksimfrac{n^{k+1}}{k+1}.$$
$endgroup$
– Lord Shark the Unknown
Dec 15 '18 at 15:10
1
$begingroup$
To calculate, use Cesàro--Stolz theorem.
$endgroup$
– xbh
Dec 15 '18 at 15:30
4
4
$begingroup$
For $k>0$, $$sum_{i=1}^n i^ksimfrac{n^{k+1}}{k+1}.$$
$endgroup$
– Lord Shark the Unknown
Dec 15 '18 at 15:10
$begingroup$
For $k>0$, $$sum_{i=1}^n i^ksimfrac{n^{k+1}}{k+1}.$$
$endgroup$
– Lord Shark the Unknown
Dec 15 '18 at 15:10
1
1
$begingroup$
To calculate, use Cesàro--Stolz theorem.
$endgroup$
– xbh
Dec 15 '18 at 15:30
$begingroup$
To calculate, use Cesàro--Stolz theorem.
$endgroup$
– xbh
Dec 15 '18 at 15:30
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
The numerator is less than $ncdot n^{4lambda}.$ In the denominator there are at least $n/2$ terms that are at least $(n/2)^{2lambda}.$ Thus our expression is less than
$$frac{ncdot n^{4lambda}}{[(n/2)(n/2)^{2lambda}]^2}.$$
This is on the order of $dfrac{1}{n}$ as $nto infty,$ hence the limit is $0.$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3041582%2flim-n-to-infty-frac-sum-i-1ni4-lambda-big-sum-i-1ni2-lambda%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The numerator is less than $ncdot n^{4lambda}.$ In the denominator there are at least $n/2$ terms that are at least $(n/2)^{2lambda}.$ Thus our expression is less than
$$frac{ncdot n^{4lambda}}{[(n/2)(n/2)^{2lambda}]^2}.$$
This is on the order of $dfrac{1}{n}$ as $nto infty,$ hence the limit is $0.$
$endgroup$
add a comment |
$begingroup$
The numerator is less than $ncdot n^{4lambda}.$ In the denominator there are at least $n/2$ terms that are at least $(n/2)^{2lambda}.$ Thus our expression is less than
$$frac{ncdot n^{4lambda}}{[(n/2)(n/2)^{2lambda}]^2}.$$
This is on the order of $dfrac{1}{n}$ as $nto infty,$ hence the limit is $0.$
$endgroup$
add a comment |
$begingroup$
The numerator is less than $ncdot n^{4lambda}.$ In the denominator there are at least $n/2$ terms that are at least $(n/2)^{2lambda}.$ Thus our expression is less than
$$frac{ncdot n^{4lambda}}{[(n/2)(n/2)^{2lambda}]^2}.$$
This is on the order of $dfrac{1}{n}$ as $nto infty,$ hence the limit is $0.$
$endgroup$
The numerator is less than $ncdot n^{4lambda}.$ In the denominator there are at least $n/2$ terms that are at least $(n/2)^{2lambda}.$ Thus our expression is less than
$$frac{ncdot n^{4lambda}}{[(n/2)(n/2)^{2lambda}]^2}.$$
This is on the order of $dfrac{1}{n}$ as $nto infty,$ hence the limit is $0.$
answered Dec 15 '18 at 17:56
zhw.zhw.
72.9k43175
72.9k43175
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3041582%2flim-n-to-infty-frac-sum-i-1ni4-lambda-big-sum-i-1ni2-lambda%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
4
$begingroup$
For $k>0$, $$sum_{i=1}^n i^ksimfrac{n^{k+1}}{k+1}.$$
$endgroup$
– Lord Shark the Unknown
Dec 15 '18 at 15:10
1
$begingroup$
To calculate, use Cesàro--Stolz theorem.
$endgroup$
– xbh
Dec 15 '18 at 15:30