Permutation probability












2












$begingroup$


Let $S = {1,2,3,4,5,...,n}$.



Let $Omega$ be set of permutation maps of $S$.



Let $Phi : mathbb{R} to mathbb{R}$ be strictly positive and strictly increasing map.



Consider positive function $P: Omega to mathbb{R}$ defined by



$$P(tau) = prod_{j=1}^{n} frac{Phi(tau(j))}{sum_{k=j}^n Phi(tau(k))}.$$



I want to show that
$P$ is probability function on $Omega$. For that , I should show that $$sum_{tau in Omega} P(tau)=1.$$



I tried to calculate
$$sum_{l=1}^nsum_{tau(l)=1} P(tau).$$



But it is difficult.



Is anyone want to help me?










share|cite|improve this question











$endgroup$












  • $begingroup$
    I'm confused. $P$ doesn't take an argument in $S$. Did you want to say that $P$ is a probability measure on $color{red}Omega$?
    $endgroup$
    – user593746
    Dec 15 '18 at 16:09










  • $begingroup$
    @Zvi you are right
    $endgroup$
    – Planche
    Dec 15 '18 at 16:17
















2












$begingroup$


Let $S = {1,2,3,4,5,...,n}$.



Let $Omega$ be set of permutation maps of $S$.



Let $Phi : mathbb{R} to mathbb{R}$ be strictly positive and strictly increasing map.



Consider positive function $P: Omega to mathbb{R}$ defined by



$$P(tau) = prod_{j=1}^{n} frac{Phi(tau(j))}{sum_{k=j}^n Phi(tau(k))}.$$



I want to show that
$P$ is probability function on $Omega$. For that , I should show that $$sum_{tau in Omega} P(tau)=1.$$



I tried to calculate
$$sum_{l=1}^nsum_{tau(l)=1} P(tau).$$



But it is difficult.



Is anyone want to help me?










share|cite|improve this question











$endgroup$












  • $begingroup$
    I'm confused. $P$ doesn't take an argument in $S$. Did you want to say that $P$ is a probability measure on $color{red}Omega$?
    $endgroup$
    – user593746
    Dec 15 '18 at 16:09










  • $begingroup$
    @Zvi you are right
    $endgroup$
    – Planche
    Dec 15 '18 at 16:17














2












2








2


1



$begingroup$


Let $S = {1,2,3,4,5,...,n}$.



Let $Omega$ be set of permutation maps of $S$.



Let $Phi : mathbb{R} to mathbb{R}$ be strictly positive and strictly increasing map.



Consider positive function $P: Omega to mathbb{R}$ defined by



$$P(tau) = prod_{j=1}^{n} frac{Phi(tau(j))}{sum_{k=j}^n Phi(tau(k))}.$$



I want to show that
$P$ is probability function on $Omega$. For that , I should show that $$sum_{tau in Omega} P(tau)=1.$$



I tried to calculate
$$sum_{l=1}^nsum_{tau(l)=1} P(tau).$$



But it is difficult.



Is anyone want to help me?










share|cite|improve this question











$endgroup$




Let $S = {1,2,3,4,5,...,n}$.



Let $Omega$ be set of permutation maps of $S$.



Let $Phi : mathbb{R} to mathbb{R}$ be strictly positive and strictly increasing map.



Consider positive function $P: Omega to mathbb{R}$ defined by



$$P(tau) = prod_{j=1}^{n} frac{Phi(tau(j))}{sum_{k=j}^n Phi(tau(k))}.$$



I want to show that
$P$ is probability function on $Omega$. For that , I should show that $$sum_{tau in Omega} P(tau)=1.$$



I tried to calculate
$$sum_{l=1}^nsum_{tau(l)=1} P(tau).$$



But it is difficult.



Is anyone want to help me?







probability combinatorics discrete-mathematics probability-distributions permutations






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 15 '18 at 16:20







user593746

















asked Dec 15 '18 at 14:48









PlanchePlanche

887212




887212












  • $begingroup$
    I'm confused. $P$ doesn't take an argument in $S$. Did you want to say that $P$ is a probability measure on $color{red}Omega$?
    $endgroup$
    – user593746
    Dec 15 '18 at 16:09










  • $begingroup$
    @Zvi you are right
    $endgroup$
    – Planche
    Dec 15 '18 at 16:17


















  • $begingroup$
    I'm confused. $P$ doesn't take an argument in $S$. Did you want to say that $P$ is a probability measure on $color{red}Omega$?
    $endgroup$
    – user593746
    Dec 15 '18 at 16:09










  • $begingroup$
    @Zvi you are right
    $endgroup$
    – Planche
    Dec 15 '18 at 16:17
















$begingroup$
I'm confused. $P$ doesn't take an argument in $S$. Did you want to say that $P$ is a probability measure on $color{red}Omega$?
$endgroup$
– user593746
Dec 15 '18 at 16:09




$begingroup$
I'm confused. $P$ doesn't take an argument in $S$. Did you want to say that $P$ is a probability measure on $color{red}Omega$?
$endgroup$
– user593746
Dec 15 '18 at 16:09












$begingroup$
@Zvi you are right
$endgroup$
– Planche
Dec 15 '18 at 16:17




$begingroup$
@Zvi you are right
$endgroup$
– Planche
Dec 15 '18 at 16:17










1 Answer
1






active

oldest

votes


















2












$begingroup$

I do not need the monotonicity of $Phi$, only positivity. And since we only need the values of $Phi$ on $Bbb N_1$, I will assume $Phi:Bbb{N}_1to (0,infty)$.



We prove this by induction on $n$. And since dealing with many values of $n$ at the same time, things can get confusing. So, I denote $S_n$ and $Omega_n$ for $S$ and $Omega$ corresponding to $n$. Since $P$ depends on both $n$ and $Phi$, we write $P^{Phi}_n$ for $P$ corresponding to a given pair $(n,Phi)$.



The cases $n=1$ and $n=2$ are trivial. Suppose that $ngeq 3$ and we know the claim holds for $n-1$. For $kin {1,2,ldots,n}$, let $Omega_n(k)$ denote the subset of $Omega_n$ consisting of $tauin Omega_n$ such that $tau(1)=k$. Define $Phi_{k}:Bbb{N}_1to(0,infty)$ by
$$Phi_k(m)=begin{cases}Phi(m)&text{if} m<k,\ Phi(m+1)&text{if} mgeq k.end{cases}$$
Define $s_k:Bbb{N}_1toBbb{N}_1$ to be
$$s_k(m)=begin{cases}m&text{if }mleq k,\m-1&text{if }m>k.end{cases}$$ Let $Gamma_{n,k}:Omega_n(k)toOmega_{n-1}$ be the bijective map sending
$$tau=begin{pmatrix}1&2&cdots&n\tau(1)&tau(2)&cdots&tau(n)end{pmatrix}mapsto begin{pmatrix} 1 & 2 & cdots &n-1\ s_kbig(tau(2)big)&s_kbig(tau(3)big)&cdots&s_kbig(tau(n)big)end{pmatrix}=Gamma_{n,k}tau.$$
It follows that
$$P^Phi_n(tau)=frac{Phi(k)}{sum_{i=1}^nPhi(i)}P^{Phi_k}_{n-1}left(Gamma_{n,k}tauright)$$
for every $tauinOmega_n(k)$. By induction,
$$sum_{tauinOmega_n(k)}P^{Phi_k}_{n-1}(Gamma_{n,k}tau)=sum_{sigmain Omega_{n-1}}P^{Phi_k}_{n-1}(sigma)=1.$$
That is,
$$sum_{tauinOmega_n(k)}P_n^Phi(tau)=frac{Phi(k)}{sum_{i=1}^nPhi(i)}sum_{tauinOmega_n(k)}P^{Phi_k}_{n-1}(Gamma_{n,k}tau)=frac{Phi(k)}{sum_{i=1}^nPhi(i)}.$$
Consequently,
$$sum_{tauinOmega_n}P_n^Phi(tau)=sum_{k=1}^nsum_{tauinOmega_k(n)}P_n^Phi(tau)=sum_{k=1}^nfrac{Phi(k)}{sum_{i=1}^nPhi(i)}=1.$$






share|cite|improve this answer











$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3041567%2fpermutation-probability%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    2












    $begingroup$

    I do not need the monotonicity of $Phi$, only positivity. And since we only need the values of $Phi$ on $Bbb N_1$, I will assume $Phi:Bbb{N}_1to (0,infty)$.



    We prove this by induction on $n$. And since dealing with many values of $n$ at the same time, things can get confusing. So, I denote $S_n$ and $Omega_n$ for $S$ and $Omega$ corresponding to $n$. Since $P$ depends on both $n$ and $Phi$, we write $P^{Phi}_n$ for $P$ corresponding to a given pair $(n,Phi)$.



    The cases $n=1$ and $n=2$ are trivial. Suppose that $ngeq 3$ and we know the claim holds for $n-1$. For $kin {1,2,ldots,n}$, let $Omega_n(k)$ denote the subset of $Omega_n$ consisting of $tauin Omega_n$ such that $tau(1)=k$. Define $Phi_{k}:Bbb{N}_1to(0,infty)$ by
    $$Phi_k(m)=begin{cases}Phi(m)&text{if} m<k,\ Phi(m+1)&text{if} mgeq k.end{cases}$$
    Define $s_k:Bbb{N}_1toBbb{N}_1$ to be
    $$s_k(m)=begin{cases}m&text{if }mleq k,\m-1&text{if }m>k.end{cases}$$ Let $Gamma_{n,k}:Omega_n(k)toOmega_{n-1}$ be the bijective map sending
    $$tau=begin{pmatrix}1&2&cdots&n\tau(1)&tau(2)&cdots&tau(n)end{pmatrix}mapsto begin{pmatrix} 1 & 2 & cdots &n-1\ s_kbig(tau(2)big)&s_kbig(tau(3)big)&cdots&s_kbig(tau(n)big)end{pmatrix}=Gamma_{n,k}tau.$$
    It follows that
    $$P^Phi_n(tau)=frac{Phi(k)}{sum_{i=1}^nPhi(i)}P^{Phi_k}_{n-1}left(Gamma_{n,k}tauright)$$
    for every $tauinOmega_n(k)$. By induction,
    $$sum_{tauinOmega_n(k)}P^{Phi_k}_{n-1}(Gamma_{n,k}tau)=sum_{sigmain Omega_{n-1}}P^{Phi_k}_{n-1}(sigma)=1.$$
    That is,
    $$sum_{tauinOmega_n(k)}P_n^Phi(tau)=frac{Phi(k)}{sum_{i=1}^nPhi(i)}sum_{tauinOmega_n(k)}P^{Phi_k}_{n-1}(Gamma_{n,k}tau)=frac{Phi(k)}{sum_{i=1}^nPhi(i)}.$$
    Consequently,
    $$sum_{tauinOmega_n}P_n^Phi(tau)=sum_{k=1}^nsum_{tauinOmega_k(n)}P_n^Phi(tau)=sum_{k=1}^nfrac{Phi(k)}{sum_{i=1}^nPhi(i)}=1.$$






    share|cite|improve this answer











    $endgroup$


















      2












      $begingroup$

      I do not need the monotonicity of $Phi$, only positivity. And since we only need the values of $Phi$ on $Bbb N_1$, I will assume $Phi:Bbb{N}_1to (0,infty)$.



      We prove this by induction on $n$. And since dealing with many values of $n$ at the same time, things can get confusing. So, I denote $S_n$ and $Omega_n$ for $S$ and $Omega$ corresponding to $n$. Since $P$ depends on both $n$ and $Phi$, we write $P^{Phi}_n$ for $P$ corresponding to a given pair $(n,Phi)$.



      The cases $n=1$ and $n=2$ are trivial. Suppose that $ngeq 3$ and we know the claim holds for $n-1$. For $kin {1,2,ldots,n}$, let $Omega_n(k)$ denote the subset of $Omega_n$ consisting of $tauin Omega_n$ such that $tau(1)=k$. Define $Phi_{k}:Bbb{N}_1to(0,infty)$ by
      $$Phi_k(m)=begin{cases}Phi(m)&text{if} m<k,\ Phi(m+1)&text{if} mgeq k.end{cases}$$
      Define $s_k:Bbb{N}_1toBbb{N}_1$ to be
      $$s_k(m)=begin{cases}m&text{if }mleq k,\m-1&text{if }m>k.end{cases}$$ Let $Gamma_{n,k}:Omega_n(k)toOmega_{n-1}$ be the bijective map sending
      $$tau=begin{pmatrix}1&2&cdots&n\tau(1)&tau(2)&cdots&tau(n)end{pmatrix}mapsto begin{pmatrix} 1 & 2 & cdots &n-1\ s_kbig(tau(2)big)&s_kbig(tau(3)big)&cdots&s_kbig(tau(n)big)end{pmatrix}=Gamma_{n,k}tau.$$
      It follows that
      $$P^Phi_n(tau)=frac{Phi(k)}{sum_{i=1}^nPhi(i)}P^{Phi_k}_{n-1}left(Gamma_{n,k}tauright)$$
      for every $tauinOmega_n(k)$. By induction,
      $$sum_{tauinOmega_n(k)}P^{Phi_k}_{n-1}(Gamma_{n,k}tau)=sum_{sigmain Omega_{n-1}}P^{Phi_k}_{n-1}(sigma)=1.$$
      That is,
      $$sum_{tauinOmega_n(k)}P_n^Phi(tau)=frac{Phi(k)}{sum_{i=1}^nPhi(i)}sum_{tauinOmega_n(k)}P^{Phi_k}_{n-1}(Gamma_{n,k}tau)=frac{Phi(k)}{sum_{i=1}^nPhi(i)}.$$
      Consequently,
      $$sum_{tauinOmega_n}P_n^Phi(tau)=sum_{k=1}^nsum_{tauinOmega_k(n)}P_n^Phi(tau)=sum_{k=1}^nfrac{Phi(k)}{sum_{i=1}^nPhi(i)}=1.$$






      share|cite|improve this answer











      $endgroup$
















        2












        2








        2





        $begingroup$

        I do not need the monotonicity of $Phi$, only positivity. And since we only need the values of $Phi$ on $Bbb N_1$, I will assume $Phi:Bbb{N}_1to (0,infty)$.



        We prove this by induction on $n$. And since dealing with many values of $n$ at the same time, things can get confusing. So, I denote $S_n$ and $Omega_n$ for $S$ and $Omega$ corresponding to $n$. Since $P$ depends on both $n$ and $Phi$, we write $P^{Phi}_n$ for $P$ corresponding to a given pair $(n,Phi)$.



        The cases $n=1$ and $n=2$ are trivial. Suppose that $ngeq 3$ and we know the claim holds for $n-1$. For $kin {1,2,ldots,n}$, let $Omega_n(k)$ denote the subset of $Omega_n$ consisting of $tauin Omega_n$ such that $tau(1)=k$. Define $Phi_{k}:Bbb{N}_1to(0,infty)$ by
        $$Phi_k(m)=begin{cases}Phi(m)&text{if} m<k,\ Phi(m+1)&text{if} mgeq k.end{cases}$$
        Define $s_k:Bbb{N}_1toBbb{N}_1$ to be
        $$s_k(m)=begin{cases}m&text{if }mleq k,\m-1&text{if }m>k.end{cases}$$ Let $Gamma_{n,k}:Omega_n(k)toOmega_{n-1}$ be the bijective map sending
        $$tau=begin{pmatrix}1&2&cdots&n\tau(1)&tau(2)&cdots&tau(n)end{pmatrix}mapsto begin{pmatrix} 1 & 2 & cdots &n-1\ s_kbig(tau(2)big)&s_kbig(tau(3)big)&cdots&s_kbig(tau(n)big)end{pmatrix}=Gamma_{n,k}tau.$$
        It follows that
        $$P^Phi_n(tau)=frac{Phi(k)}{sum_{i=1}^nPhi(i)}P^{Phi_k}_{n-1}left(Gamma_{n,k}tauright)$$
        for every $tauinOmega_n(k)$. By induction,
        $$sum_{tauinOmega_n(k)}P^{Phi_k}_{n-1}(Gamma_{n,k}tau)=sum_{sigmain Omega_{n-1}}P^{Phi_k}_{n-1}(sigma)=1.$$
        That is,
        $$sum_{tauinOmega_n(k)}P_n^Phi(tau)=frac{Phi(k)}{sum_{i=1}^nPhi(i)}sum_{tauinOmega_n(k)}P^{Phi_k}_{n-1}(Gamma_{n,k}tau)=frac{Phi(k)}{sum_{i=1}^nPhi(i)}.$$
        Consequently,
        $$sum_{tauinOmega_n}P_n^Phi(tau)=sum_{k=1}^nsum_{tauinOmega_k(n)}P_n^Phi(tau)=sum_{k=1}^nfrac{Phi(k)}{sum_{i=1}^nPhi(i)}=1.$$






        share|cite|improve this answer











        $endgroup$



        I do not need the monotonicity of $Phi$, only positivity. And since we only need the values of $Phi$ on $Bbb N_1$, I will assume $Phi:Bbb{N}_1to (0,infty)$.



        We prove this by induction on $n$. And since dealing with many values of $n$ at the same time, things can get confusing. So, I denote $S_n$ and $Omega_n$ for $S$ and $Omega$ corresponding to $n$. Since $P$ depends on both $n$ and $Phi$, we write $P^{Phi}_n$ for $P$ corresponding to a given pair $(n,Phi)$.



        The cases $n=1$ and $n=2$ are trivial. Suppose that $ngeq 3$ and we know the claim holds for $n-1$. For $kin {1,2,ldots,n}$, let $Omega_n(k)$ denote the subset of $Omega_n$ consisting of $tauin Omega_n$ such that $tau(1)=k$. Define $Phi_{k}:Bbb{N}_1to(0,infty)$ by
        $$Phi_k(m)=begin{cases}Phi(m)&text{if} m<k,\ Phi(m+1)&text{if} mgeq k.end{cases}$$
        Define $s_k:Bbb{N}_1toBbb{N}_1$ to be
        $$s_k(m)=begin{cases}m&text{if }mleq k,\m-1&text{if }m>k.end{cases}$$ Let $Gamma_{n,k}:Omega_n(k)toOmega_{n-1}$ be the bijective map sending
        $$tau=begin{pmatrix}1&2&cdots&n\tau(1)&tau(2)&cdots&tau(n)end{pmatrix}mapsto begin{pmatrix} 1 & 2 & cdots &n-1\ s_kbig(tau(2)big)&s_kbig(tau(3)big)&cdots&s_kbig(tau(n)big)end{pmatrix}=Gamma_{n,k}tau.$$
        It follows that
        $$P^Phi_n(tau)=frac{Phi(k)}{sum_{i=1}^nPhi(i)}P^{Phi_k}_{n-1}left(Gamma_{n,k}tauright)$$
        for every $tauinOmega_n(k)$. By induction,
        $$sum_{tauinOmega_n(k)}P^{Phi_k}_{n-1}(Gamma_{n,k}tau)=sum_{sigmain Omega_{n-1}}P^{Phi_k}_{n-1}(sigma)=1.$$
        That is,
        $$sum_{tauinOmega_n(k)}P_n^Phi(tau)=frac{Phi(k)}{sum_{i=1}^nPhi(i)}sum_{tauinOmega_n(k)}P^{Phi_k}_{n-1}(Gamma_{n,k}tau)=frac{Phi(k)}{sum_{i=1}^nPhi(i)}.$$
        Consequently,
        $$sum_{tauinOmega_n}P_n^Phi(tau)=sum_{k=1}^nsum_{tauinOmega_k(n)}P_n^Phi(tau)=sum_{k=1}^nfrac{Phi(k)}{sum_{i=1}^nPhi(i)}=1.$$







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Dec 15 '18 at 18:10

























        answered Dec 15 '18 at 16:48







        user593746





































            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3041567%2fpermutation-probability%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Ellipse (mathématiques)

            Quarter-circle Tiles

            Mont Emei