Permutation probability
$begingroup$
Let $S = {1,2,3,4,5,...,n}$.
Let $Omega$ be set of permutation maps of $S$.
Let $Phi : mathbb{R} to mathbb{R}$ be strictly positive and strictly increasing map.
Consider positive function $P: Omega to mathbb{R}$ defined by
$$P(tau) = prod_{j=1}^{n} frac{Phi(tau(j))}{sum_{k=j}^n Phi(tau(k))}.$$
I want to show that
$P$ is probability function on $Omega$. For that , I should show that $$sum_{tau in Omega} P(tau)=1.$$
I tried to calculate
$$sum_{l=1}^nsum_{tau(l)=1} P(tau).$$
But it is difficult.
Is anyone want to help me?
probability combinatorics discrete-mathematics probability-distributions permutations
$endgroup$
add a comment |
$begingroup$
Let $S = {1,2,3,4,5,...,n}$.
Let $Omega$ be set of permutation maps of $S$.
Let $Phi : mathbb{R} to mathbb{R}$ be strictly positive and strictly increasing map.
Consider positive function $P: Omega to mathbb{R}$ defined by
$$P(tau) = prod_{j=1}^{n} frac{Phi(tau(j))}{sum_{k=j}^n Phi(tau(k))}.$$
I want to show that
$P$ is probability function on $Omega$. For that , I should show that $$sum_{tau in Omega} P(tau)=1.$$
I tried to calculate
$$sum_{l=1}^nsum_{tau(l)=1} P(tau).$$
But it is difficult.
Is anyone want to help me?
probability combinatorics discrete-mathematics probability-distributions permutations
$endgroup$
$begingroup$
I'm confused. $P$ doesn't take an argument in $S$. Did you want to say that $P$ is a probability measure on $color{red}Omega$?
$endgroup$
– user593746
Dec 15 '18 at 16:09
$begingroup$
@Zvi you are right
$endgroup$
– Planche
Dec 15 '18 at 16:17
add a comment |
$begingroup$
Let $S = {1,2,3,4,5,...,n}$.
Let $Omega$ be set of permutation maps of $S$.
Let $Phi : mathbb{R} to mathbb{R}$ be strictly positive and strictly increasing map.
Consider positive function $P: Omega to mathbb{R}$ defined by
$$P(tau) = prod_{j=1}^{n} frac{Phi(tau(j))}{sum_{k=j}^n Phi(tau(k))}.$$
I want to show that
$P$ is probability function on $Omega$. For that , I should show that $$sum_{tau in Omega} P(tau)=1.$$
I tried to calculate
$$sum_{l=1}^nsum_{tau(l)=1} P(tau).$$
But it is difficult.
Is anyone want to help me?
probability combinatorics discrete-mathematics probability-distributions permutations
$endgroup$
Let $S = {1,2,3,4,5,...,n}$.
Let $Omega$ be set of permutation maps of $S$.
Let $Phi : mathbb{R} to mathbb{R}$ be strictly positive and strictly increasing map.
Consider positive function $P: Omega to mathbb{R}$ defined by
$$P(tau) = prod_{j=1}^{n} frac{Phi(tau(j))}{sum_{k=j}^n Phi(tau(k))}.$$
I want to show that
$P$ is probability function on $Omega$. For that , I should show that $$sum_{tau in Omega} P(tau)=1.$$
I tried to calculate
$$sum_{l=1}^nsum_{tau(l)=1} P(tau).$$
But it is difficult.
Is anyone want to help me?
probability combinatorics discrete-mathematics probability-distributions permutations
probability combinatorics discrete-mathematics probability-distributions permutations
edited Dec 15 '18 at 16:20
user593746
asked Dec 15 '18 at 14:48
PlanchePlanche
887212
887212
$begingroup$
I'm confused. $P$ doesn't take an argument in $S$. Did you want to say that $P$ is a probability measure on $color{red}Omega$?
$endgroup$
– user593746
Dec 15 '18 at 16:09
$begingroup$
@Zvi you are right
$endgroup$
– Planche
Dec 15 '18 at 16:17
add a comment |
$begingroup$
I'm confused. $P$ doesn't take an argument in $S$. Did you want to say that $P$ is a probability measure on $color{red}Omega$?
$endgroup$
– user593746
Dec 15 '18 at 16:09
$begingroup$
@Zvi you are right
$endgroup$
– Planche
Dec 15 '18 at 16:17
$begingroup$
I'm confused. $P$ doesn't take an argument in $S$. Did you want to say that $P$ is a probability measure on $color{red}Omega$?
$endgroup$
– user593746
Dec 15 '18 at 16:09
$begingroup$
I'm confused. $P$ doesn't take an argument in $S$. Did you want to say that $P$ is a probability measure on $color{red}Omega$?
$endgroup$
– user593746
Dec 15 '18 at 16:09
$begingroup$
@Zvi you are right
$endgroup$
– Planche
Dec 15 '18 at 16:17
$begingroup$
@Zvi you are right
$endgroup$
– Planche
Dec 15 '18 at 16:17
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
I do not need the monotonicity of $Phi$, only positivity. And since we only need the values of $Phi$ on $Bbb N_1$, I will assume $Phi:Bbb{N}_1to (0,infty)$.
We prove this by induction on $n$. And since dealing with many values of $n$ at the same time, things can get confusing. So, I denote $S_n$ and $Omega_n$ for $S$ and $Omega$ corresponding to $n$. Since $P$ depends on both $n$ and $Phi$, we write $P^{Phi}_n$ for $P$ corresponding to a given pair $(n,Phi)$.
The cases $n=1$ and $n=2$ are trivial. Suppose that $ngeq 3$ and we know the claim holds for $n-1$. For $kin {1,2,ldots,n}$, let $Omega_n(k)$ denote the subset of $Omega_n$ consisting of $tauin Omega_n$ such that $tau(1)=k$. Define $Phi_{k}:Bbb{N}_1to(0,infty)$ by
$$Phi_k(m)=begin{cases}Phi(m)&text{if} m<k,\ Phi(m+1)&text{if} mgeq k.end{cases}$$
Define $s_k:Bbb{N}_1toBbb{N}_1$ to be
$$s_k(m)=begin{cases}m&text{if }mleq k,\m-1&text{if }m>k.end{cases}$$ Let $Gamma_{n,k}:Omega_n(k)toOmega_{n-1}$ be the bijective map sending
$$tau=begin{pmatrix}1&2&cdots&n\tau(1)&tau(2)&cdots&tau(n)end{pmatrix}mapsto begin{pmatrix} 1 & 2 & cdots &n-1\ s_kbig(tau(2)big)&s_kbig(tau(3)big)&cdots&s_kbig(tau(n)big)end{pmatrix}=Gamma_{n,k}tau.$$
It follows that
$$P^Phi_n(tau)=frac{Phi(k)}{sum_{i=1}^nPhi(i)}P^{Phi_k}_{n-1}left(Gamma_{n,k}tauright)$$
for every $tauinOmega_n(k)$. By induction,
$$sum_{tauinOmega_n(k)}P^{Phi_k}_{n-1}(Gamma_{n,k}tau)=sum_{sigmain Omega_{n-1}}P^{Phi_k}_{n-1}(sigma)=1.$$
That is,
$$sum_{tauinOmega_n(k)}P_n^Phi(tau)=frac{Phi(k)}{sum_{i=1}^nPhi(i)}sum_{tauinOmega_n(k)}P^{Phi_k}_{n-1}(Gamma_{n,k}tau)=frac{Phi(k)}{sum_{i=1}^nPhi(i)}.$$
Consequently,
$$sum_{tauinOmega_n}P_n^Phi(tau)=sum_{k=1}^nsum_{tauinOmega_k(n)}P_n^Phi(tau)=sum_{k=1}^nfrac{Phi(k)}{sum_{i=1}^nPhi(i)}=1.$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3041567%2fpermutation-probability%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
I do not need the monotonicity of $Phi$, only positivity. And since we only need the values of $Phi$ on $Bbb N_1$, I will assume $Phi:Bbb{N}_1to (0,infty)$.
We prove this by induction on $n$. And since dealing with many values of $n$ at the same time, things can get confusing. So, I denote $S_n$ and $Omega_n$ for $S$ and $Omega$ corresponding to $n$. Since $P$ depends on both $n$ and $Phi$, we write $P^{Phi}_n$ for $P$ corresponding to a given pair $(n,Phi)$.
The cases $n=1$ and $n=2$ are trivial. Suppose that $ngeq 3$ and we know the claim holds for $n-1$. For $kin {1,2,ldots,n}$, let $Omega_n(k)$ denote the subset of $Omega_n$ consisting of $tauin Omega_n$ such that $tau(1)=k$. Define $Phi_{k}:Bbb{N}_1to(0,infty)$ by
$$Phi_k(m)=begin{cases}Phi(m)&text{if} m<k,\ Phi(m+1)&text{if} mgeq k.end{cases}$$
Define $s_k:Bbb{N}_1toBbb{N}_1$ to be
$$s_k(m)=begin{cases}m&text{if }mleq k,\m-1&text{if }m>k.end{cases}$$ Let $Gamma_{n,k}:Omega_n(k)toOmega_{n-1}$ be the bijective map sending
$$tau=begin{pmatrix}1&2&cdots&n\tau(1)&tau(2)&cdots&tau(n)end{pmatrix}mapsto begin{pmatrix} 1 & 2 & cdots &n-1\ s_kbig(tau(2)big)&s_kbig(tau(3)big)&cdots&s_kbig(tau(n)big)end{pmatrix}=Gamma_{n,k}tau.$$
It follows that
$$P^Phi_n(tau)=frac{Phi(k)}{sum_{i=1}^nPhi(i)}P^{Phi_k}_{n-1}left(Gamma_{n,k}tauright)$$
for every $tauinOmega_n(k)$. By induction,
$$sum_{tauinOmega_n(k)}P^{Phi_k}_{n-1}(Gamma_{n,k}tau)=sum_{sigmain Omega_{n-1}}P^{Phi_k}_{n-1}(sigma)=1.$$
That is,
$$sum_{tauinOmega_n(k)}P_n^Phi(tau)=frac{Phi(k)}{sum_{i=1}^nPhi(i)}sum_{tauinOmega_n(k)}P^{Phi_k}_{n-1}(Gamma_{n,k}tau)=frac{Phi(k)}{sum_{i=1}^nPhi(i)}.$$
Consequently,
$$sum_{tauinOmega_n}P_n^Phi(tau)=sum_{k=1}^nsum_{tauinOmega_k(n)}P_n^Phi(tau)=sum_{k=1}^nfrac{Phi(k)}{sum_{i=1}^nPhi(i)}=1.$$
$endgroup$
add a comment |
$begingroup$
I do not need the monotonicity of $Phi$, only positivity. And since we only need the values of $Phi$ on $Bbb N_1$, I will assume $Phi:Bbb{N}_1to (0,infty)$.
We prove this by induction on $n$. And since dealing with many values of $n$ at the same time, things can get confusing. So, I denote $S_n$ and $Omega_n$ for $S$ and $Omega$ corresponding to $n$. Since $P$ depends on both $n$ and $Phi$, we write $P^{Phi}_n$ for $P$ corresponding to a given pair $(n,Phi)$.
The cases $n=1$ and $n=2$ are trivial. Suppose that $ngeq 3$ and we know the claim holds for $n-1$. For $kin {1,2,ldots,n}$, let $Omega_n(k)$ denote the subset of $Omega_n$ consisting of $tauin Omega_n$ such that $tau(1)=k$. Define $Phi_{k}:Bbb{N}_1to(0,infty)$ by
$$Phi_k(m)=begin{cases}Phi(m)&text{if} m<k,\ Phi(m+1)&text{if} mgeq k.end{cases}$$
Define $s_k:Bbb{N}_1toBbb{N}_1$ to be
$$s_k(m)=begin{cases}m&text{if }mleq k,\m-1&text{if }m>k.end{cases}$$ Let $Gamma_{n,k}:Omega_n(k)toOmega_{n-1}$ be the bijective map sending
$$tau=begin{pmatrix}1&2&cdots&n\tau(1)&tau(2)&cdots&tau(n)end{pmatrix}mapsto begin{pmatrix} 1 & 2 & cdots &n-1\ s_kbig(tau(2)big)&s_kbig(tau(3)big)&cdots&s_kbig(tau(n)big)end{pmatrix}=Gamma_{n,k}tau.$$
It follows that
$$P^Phi_n(tau)=frac{Phi(k)}{sum_{i=1}^nPhi(i)}P^{Phi_k}_{n-1}left(Gamma_{n,k}tauright)$$
for every $tauinOmega_n(k)$. By induction,
$$sum_{tauinOmega_n(k)}P^{Phi_k}_{n-1}(Gamma_{n,k}tau)=sum_{sigmain Omega_{n-1}}P^{Phi_k}_{n-1}(sigma)=1.$$
That is,
$$sum_{tauinOmega_n(k)}P_n^Phi(tau)=frac{Phi(k)}{sum_{i=1}^nPhi(i)}sum_{tauinOmega_n(k)}P^{Phi_k}_{n-1}(Gamma_{n,k}tau)=frac{Phi(k)}{sum_{i=1}^nPhi(i)}.$$
Consequently,
$$sum_{tauinOmega_n}P_n^Phi(tau)=sum_{k=1}^nsum_{tauinOmega_k(n)}P_n^Phi(tau)=sum_{k=1}^nfrac{Phi(k)}{sum_{i=1}^nPhi(i)}=1.$$
$endgroup$
add a comment |
$begingroup$
I do not need the monotonicity of $Phi$, only positivity. And since we only need the values of $Phi$ on $Bbb N_1$, I will assume $Phi:Bbb{N}_1to (0,infty)$.
We prove this by induction on $n$. And since dealing with many values of $n$ at the same time, things can get confusing. So, I denote $S_n$ and $Omega_n$ for $S$ and $Omega$ corresponding to $n$. Since $P$ depends on both $n$ and $Phi$, we write $P^{Phi}_n$ for $P$ corresponding to a given pair $(n,Phi)$.
The cases $n=1$ and $n=2$ are trivial. Suppose that $ngeq 3$ and we know the claim holds for $n-1$. For $kin {1,2,ldots,n}$, let $Omega_n(k)$ denote the subset of $Omega_n$ consisting of $tauin Omega_n$ such that $tau(1)=k$. Define $Phi_{k}:Bbb{N}_1to(0,infty)$ by
$$Phi_k(m)=begin{cases}Phi(m)&text{if} m<k,\ Phi(m+1)&text{if} mgeq k.end{cases}$$
Define $s_k:Bbb{N}_1toBbb{N}_1$ to be
$$s_k(m)=begin{cases}m&text{if }mleq k,\m-1&text{if }m>k.end{cases}$$ Let $Gamma_{n,k}:Omega_n(k)toOmega_{n-1}$ be the bijective map sending
$$tau=begin{pmatrix}1&2&cdots&n\tau(1)&tau(2)&cdots&tau(n)end{pmatrix}mapsto begin{pmatrix} 1 & 2 & cdots &n-1\ s_kbig(tau(2)big)&s_kbig(tau(3)big)&cdots&s_kbig(tau(n)big)end{pmatrix}=Gamma_{n,k}tau.$$
It follows that
$$P^Phi_n(tau)=frac{Phi(k)}{sum_{i=1}^nPhi(i)}P^{Phi_k}_{n-1}left(Gamma_{n,k}tauright)$$
for every $tauinOmega_n(k)$. By induction,
$$sum_{tauinOmega_n(k)}P^{Phi_k}_{n-1}(Gamma_{n,k}tau)=sum_{sigmain Omega_{n-1}}P^{Phi_k}_{n-1}(sigma)=1.$$
That is,
$$sum_{tauinOmega_n(k)}P_n^Phi(tau)=frac{Phi(k)}{sum_{i=1}^nPhi(i)}sum_{tauinOmega_n(k)}P^{Phi_k}_{n-1}(Gamma_{n,k}tau)=frac{Phi(k)}{sum_{i=1}^nPhi(i)}.$$
Consequently,
$$sum_{tauinOmega_n}P_n^Phi(tau)=sum_{k=1}^nsum_{tauinOmega_k(n)}P_n^Phi(tau)=sum_{k=1}^nfrac{Phi(k)}{sum_{i=1}^nPhi(i)}=1.$$
$endgroup$
I do not need the monotonicity of $Phi$, only positivity. And since we only need the values of $Phi$ on $Bbb N_1$, I will assume $Phi:Bbb{N}_1to (0,infty)$.
We prove this by induction on $n$. And since dealing with many values of $n$ at the same time, things can get confusing. So, I denote $S_n$ and $Omega_n$ for $S$ and $Omega$ corresponding to $n$. Since $P$ depends on both $n$ and $Phi$, we write $P^{Phi}_n$ for $P$ corresponding to a given pair $(n,Phi)$.
The cases $n=1$ and $n=2$ are trivial. Suppose that $ngeq 3$ and we know the claim holds for $n-1$. For $kin {1,2,ldots,n}$, let $Omega_n(k)$ denote the subset of $Omega_n$ consisting of $tauin Omega_n$ such that $tau(1)=k$. Define $Phi_{k}:Bbb{N}_1to(0,infty)$ by
$$Phi_k(m)=begin{cases}Phi(m)&text{if} m<k,\ Phi(m+1)&text{if} mgeq k.end{cases}$$
Define $s_k:Bbb{N}_1toBbb{N}_1$ to be
$$s_k(m)=begin{cases}m&text{if }mleq k,\m-1&text{if }m>k.end{cases}$$ Let $Gamma_{n,k}:Omega_n(k)toOmega_{n-1}$ be the bijective map sending
$$tau=begin{pmatrix}1&2&cdots&n\tau(1)&tau(2)&cdots&tau(n)end{pmatrix}mapsto begin{pmatrix} 1 & 2 & cdots &n-1\ s_kbig(tau(2)big)&s_kbig(tau(3)big)&cdots&s_kbig(tau(n)big)end{pmatrix}=Gamma_{n,k}tau.$$
It follows that
$$P^Phi_n(tau)=frac{Phi(k)}{sum_{i=1}^nPhi(i)}P^{Phi_k}_{n-1}left(Gamma_{n,k}tauright)$$
for every $tauinOmega_n(k)$. By induction,
$$sum_{tauinOmega_n(k)}P^{Phi_k}_{n-1}(Gamma_{n,k}tau)=sum_{sigmain Omega_{n-1}}P^{Phi_k}_{n-1}(sigma)=1.$$
That is,
$$sum_{tauinOmega_n(k)}P_n^Phi(tau)=frac{Phi(k)}{sum_{i=1}^nPhi(i)}sum_{tauinOmega_n(k)}P^{Phi_k}_{n-1}(Gamma_{n,k}tau)=frac{Phi(k)}{sum_{i=1}^nPhi(i)}.$$
Consequently,
$$sum_{tauinOmega_n}P_n^Phi(tau)=sum_{k=1}^nsum_{tauinOmega_k(n)}P_n^Phi(tau)=sum_{k=1}^nfrac{Phi(k)}{sum_{i=1}^nPhi(i)}=1.$$
edited Dec 15 '18 at 18:10
answered Dec 15 '18 at 16:48
user593746
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3041567%2fpermutation-probability%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
I'm confused. $P$ doesn't take an argument in $S$. Did you want to say that $P$ is a probability measure on $color{red}Omega$?
$endgroup$
– user593746
Dec 15 '18 at 16:09
$begingroup$
@Zvi you are right
$endgroup$
– Planche
Dec 15 '18 at 16:17