Counterexamples about function discontinuity.












0












$begingroup$


Let $f:mathbb{R}^nrightarrow mathbb{R}^n$ be a function with a point $textbf{x}inmathbb{R}^n$ of discontinuity. Is it possible that the image $f(O_{x_i})$, the image of an open ball (containing $x$) under $f$ to be connected for all $O_{x_i}$?










share|cite|improve this question











$endgroup$

















    0












    $begingroup$


    Let $f:mathbb{R}^nrightarrow mathbb{R}^n$ be a function with a point $textbf{x}inmathbb{R}^n$ of discontinuity. Is it possible that the image $f(O_{x_i})$, the image of an open ball (containing $x$) under $f$ to be connected for all $O_{x_i}$?










    share|cite|improve this question











    $endgroup$















      0












      0








      0





      $begingroup$


      Let $f:mathbb{R}^nrightarrow mathbb{R}^n$ be a function with a point $textbf{x}inmathbb{R}^n$ of discontinuity. Is it possible that the image $f(O_{x_i})$, the image of an open ball (containing $x$) under $f$ to be connected for all $O_{x_i}$?










      share|cite|improve this question











      $endgroup$




      Let $f:mathbb{R}^nrightarrow mathbb{R}^n$ be a function with a point $textbf{x}inmathbb{R}^n$ of discontinuity. Is it possible that the image $f(O_{x_i})$, the image of an open ball (containing $x$) under $f$ to be connected for all $O_{x_i}$?







      general-topology continuity examples-counterexamples connectedness






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 7 '18 at 19:28









      José Carlos Santos

      157k22126227




      157k22126227










      asked Dec 7 '18 at 19:13









      William SunWilliam Sun

      471111




      471111






















          2 Answers
          2






          active

          oldest

          votes


















          4












          $begingroup$

          Yes. Take$$begin{array}{rccc}fcolon&mathbb R&longrightarrow&mathbb R\&x&mapsto&begin{cases}sinleft(frac1xright)&text{ if }xneq0\0&text{ otherwise.}end{cases}end{array}$$Then $f$ is discontinuous at $0$, but the image of every open interval containing $0$ is $[-1,1]$, which is connected.






          share|cite|improve this answer









          $endgroup$





















            0












            $begingroup$

            It is even possible that $f:mathbb Rto mathbb R$ maps every interval of positive length onto $mathbb R.$






            share|cite|improve this answer









            $endgroup$













              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "69"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3030266%2fcounterexamples-about-function-discontinuity%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              4












              $begingroup$

              Yes. Take$$begin{array}{rccc}fcolon&mathbb R&longrightarrow&mathbb R\&x&mapsto&begin{cases}sinleft(frac1xright)&text{ if }xneq0\0&text{ otherwise.}end{cases}end{array}$$Then $f$ is discontinuous at $0$, but the image of every open interval containing $0$ is $[-1,1]$, which is connected.






              share|cite|improve this answer









              $endgroup$


















                4












                $begingroup$

                Yes. Take$$begin{array}{rccc}fcolon&mathbb R&longrightarrow&mathbb R\&x&mapsto&begin{cases}sinleft(frac1xright)&text{ if }xneq0\0&text{ otherwise.}end{cases}end{array}$$Then $f$ is discontinuous at $0$, but the image of every open interval containing $0$ is $[-1,1]$, which is connected.






                share|cite|improve this answer









                $endgroup$
















                  4












                  4








                  4





                  $begingroup$

                  Yes. Take$$begin{array}{rccc}fcolon&mathbb R&longrightarrow&mathbb R\&x&mapsto&begin{cases}sinleft(frac1xright)&text{ if }xneq0\0&text{ otherwise.}end{cases}end{array}$$Then $f$ is discontinuous at $0$, but the image of every open interval containing $0$ is $[-1,1]$, which is connected.






                  share|cite|improve this answer









                  $endgroup$



                  Yes. Take$$begin{array}{rccc}fcolon&mathbb R&longrightarrow&mathbb R\&x&mapsto&begin{cases}sinleft(frac1xright)&text{ if }xneq0\0&text{ otherwise.}end{cases}end{array}$$Then $f$ is discontinuous at $0$, but the image of every open interval containing $0$ is $[-1,1]$, which is connected.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Dec 7 '18 at 19:27









                  José Carlos SantosJosé Carlos Santos

                  157k22126227




                  157k22126227























                      0












                      $begingroup$

                      It is even possible that $f:mathbb Rto mathbb R$ maps every interval of positive length onto $mathbb R.$






                      share|cite|improve this answer









                      $endgroup$


















                        0












                        $begingroup$

                        It is even possible that $f:mathbb Rto mathbb R$ maps every interval of positive length onto $mathbb R.$






                        share|cite|improve this answer









                        $endgroup$
















                          0












                          0








                          0





                          $begingroup$

                          It is even possible that $f:mathbb Rto mathbb R$ maps every interval of positive length onto $mathbb R.$






                          share|cite|improve this answer









                          $endgroup$



                          It is even possible that $f:mathbb Rto mathbb R$ maps every interval of positive length onto $mathbb R.$







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered Dec 7 '18 at 19:54









                          zhw.zhw.

                          72.4k43175




                          72.4k43175






























                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3030266%2fcounterexamples-about-function-discontinuity%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Ellipse (mathématiques)

                              Quarter-circle Tiles

                              Mont Emei