Counterexamples about function discontinuity.
$begingroup$
Let $f:mathbb{R}^nrightarrow mathbb{R}^n$ be a function with a point $textbf{x}inmathbb{R}^n$ of discontinuity. Is it possible that the image $f(O_{x_i})$, the image of an open ball (containing $x$) under $f$ to be connected for all $O_{x_i}$?
general-topology continuity examples-counterexamples connectedness
$endgroup$
add a comment |
$begingroup$
Let $f:mathbb{R}^nrightarrow mathbb{R}^n$ be a function with a point $textbf{x}inmathbb{R}^n$ of discontinuity. Is it possible that the image $f(O_{x_i})$, the image of an open ball (containing $x$) under $f$ to be connected for all $O_{x_i}$?
general-topology continuity examples-counterexamples connectedness
$endgroup$
add a comment |
$begingroup$
Let $f:mathbb{R}^nrightarrow mathbb{R}^n$ be a function with a point $textbf{x}inmathbb{R}^n$ of discontinuity. Is it possible that the image $f(O_{x_i})$, the image of an open ball (containing $x$) under $f$ to be connected for all $O_{x_i}$?
general-topology continuity examples-counterexamples connectedness
$endgroup$
Let $f:mathbb{R}^nrightarrow mathbb{R}^n$ be a function with a point $textbf{x}inmathbb{R}^n$ of discontinuity. Is it possible that the image $f(O_{x_i})$, the image of an open ball (containing $x$) under $f$ to be connected for all $O_{x_i}$?
general-topology continuity examples-counterexamples connectedness
general-topology continuity examples-counterexamples connectedness
edited Dec 7 '18 at 19:28
José Carlos Santos
157k22126227
157k22126227
asked Dec 7 '18 at 19:13
William SunWilliam Sun
471111
471111
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Yes. Take$$begin{array}{rccc}fcolon&mathbb R&longrightarrow&mathbb R\&x&mapsto&begin{cases}sinleft(frac1xright)&text{ if }xneq0\0&text{ otherwise.}end{cases}end{array}$$Then $f$ is discontinuous at $0$, but the image of every open interval containing $0$ is $[-1,1]$, which is connected.
$endgroup$
add a comment |
$begingroup$
It is even possible that $f:mathbb Rto mathbb R$ maps every interval of positive length onto $mathbb R.$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3030266%2fcounterexamples-about-function-discontinuity%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Yes. Take$$begin{array}{rccc}fcolon&mathbb R&longrightarrow&mathbb R\&x&mapsto&begin{cases}sinleft(frac1xright)&text{ if }xneq0\0&text{ otherwise.}end{cases}end{array}$$Then $f$ is discontinuous at $0$, but the image of every open interval containing $0$ is $[-1,1]$, which is connected.
$endgroup$
add a comment |
$begingroup$
Yes. Take$$begin{array}{rccc}fcolon&mathbb R&longrightarrow&mathbb R\&x&mapsto&begin{cases}sinleft(frac1xright)&text{ if }xneq0\0&text{ otherwise.}end{cases}end{array}$$Then $f$ is discontinuous at $0$, but the image of every open interval containing $0$ is $[-1,1]$, which is connected.
$endgroup$
add a comment |
$begingroup$
Yes. Take$$begin{array}{rccc}fcolon&mathbb R&longrightarrow&mathbb R\&x&mapsto&begin{cases}sinleft(frac1xright)&text{ if }xneq0\0&text{ otherwise.}end{cases}end{array}$$Then $f$ is discontinuous at $0$, but the image of every open interval containing $0$ is $[-1,1]$, which is connected.
$endgroup$
Yes. Take$$begin{array}{rccc}fcolon&mathbb R&longrightarrow&mathbb R\&x&mapsto&begin{cases}sinleft(frac1xright)&text{ if }xneq0\0&text{ otherwise.}end{cases}end{array}$$Then $f$ is discontinuous at $0$, but the image of every open interval containing $0$ is $[-1,1]$, which is connected.
answered Dec 7 '18 at 19:27
José Carlos SantosJosé Carlos Santos
157k22126227
157k22126227
add a comment |
add a comment |
$begingroup$
It is even possible that $f:mathbb Rto mathbb R$ maps every interval of positive length onto $mathbb R.$
$endgroup$
add a comment |
$begingroup$
It is even possible that $f:mathbb Rto mathbb R$ maps every interval of positive length onto $mathbb R.$
$endgroup$
add a comment |
$begingroup$
It is even possible that $f:mathbb Rto mathbb R$ maps every interval of positive length onto $mathbb R.$
$endgroup$
It is even possible that $f:mathbb Rto mathbb R$ maps every interval of positive length onto $mathbb R.$
answered Dec 7 '18 at 19:54
zhw.zhw.
72.4k43175
72.4k43175
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3030266%2fcounterexamples-about-function-discontinuity%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown