Random time change for a Poisson process and convergence with respect to the Skorohod topology












1












$begingroup$


Let





  • $(Omega,mathcal A,operatorname P)$ be a probability space


  • $left(Y^{(n)}_kright)_{kinmathbb N_0}$ be a time-homogeneous Markov chain on $(Omega,mathcal A,operatorname P)$ and $$X^{(n)}_t=Y^{(n)}_{lfloor ntrfloor};;;text{for all }tin[0,1]$$


  • $(N_t)_{tge0}$ be a Poisson process on $(Omega,mathcal A,operatorname P)$ with intensity $1$ independent of $Y^{(n)}$ for all $ninmathbb N$ and $$Z^{(n)}_t:=begin{cases}Y^{(n)}_{N_{nt}}&text{for }tin[0,1)\ Z^{(n)}_{1-}end{cases}$$ for $ninmathbb N$


Now, let $tau_0:=0$, $$tau_k:=infleft{t>tau_{k-1}:Delta N_t=1right};;;text{for }kinmathbb N$$ as well as $$tau^{(n)}_k:=frac{tau_k}n;;;text{for }kinmathbb N$$ and $$lambda^{(n)}_t:=sum_{k=0}^infty 1_{left[frac kn,:frac{k+1}nright)}(t)left(tau^{(n)}_k+(nt-k)left(tau^{(n)}_{k+1}-tau^{(n)}_kright)right);;;text{for }tge0$$ for $ninmathbb N$.




How can we show that $$sup_{tge0}left|lambda^{(n)}_t-tright|=sup_{tin[0,:1)}left|frac{N_{nt}}n-tright|tag1$$ for all $ninmathbb N$? (I'm unsure whether there isn't an error in the domain of one of the suprema. I could imagine that the left should be taken only over $[0,1)$ or the right actually over $[0,infty)$.)




I've read that we obtain claim by noting that $N_{nt}=lfloor nfrac{N_{nt}}nrfloor$ for all $tge0$ and $ninmathbb N$, but while that's trivially true, I don't see how we can make use of it.



Moreover, I've read that the supremum is attained at one of the jump times (I guess the jump times of $X^{(n)}$, i.e. $frac kn$ for $kinmathbb N$, are meant), but I don't know why.



However, we may observe the following: Let $tinleft[frac kn,frac{k+1}nright)$. Then, there is an $alphain[0,1)$ with $$t=frac{k+alpha}n$$ and hence $$lambda^{(n)}_t-t=left(tau^{(n)}_k-frac knright)+left(tau^{(n)}_{k+1}-tau^{(n)}_kright)alpha.tag2$$ Since this is linear in $alpha$, the supremum of $(2)$ is attained for $alpha=0$ or $alpha=1$. Thus, we should obtain $$sup_{tge0}left|lambda^{(n)}_t-tright|=sup_{kinmathbb N_0}left|tau^{(n)}_k-frac knright|=frac1nsup_{kinmathbb N_0}left|tau_k-kright|tag3.$$ Maybe we need to use $k=N_{tau_k}$ almost surely such that $$sup_{tge0}left|lambda^{(n)}_t-tright|=sup_{kinmathbb N_0}left|frac{N_{ntau^{(n)}_k}}n-tau^{(n)}_kright|tag4;;;text{almost surely}.$$ Now, clearly, $left{N_{ntau^{(n)}_k(omega)}(omega):kinmathbb N_0right}=left{N_{tau_k(omega)}(omega):kinmathbb N_0right}=left{N_t(omega):tge0right}$, but this still doesn't yield $(1)$. However, it yields $$left[tau^{(n)}_k,tau^{(n)}_{k+1}right)ni tmapstofrac{N_{nt}}n-t=k-t$$ which clearly attains its supremum at $t=tau^{(n)}_k$ or $t=tau^{(n)}_{k+1}$.



We may note that $left(frac{N_{nt}}n-tright)_{tge0}$ is a martingale, but I'm not sure if we need this fact here.










share|cite|improve this question











$endgroup$

















    1












    $begingroup$


    Let





    • $(Omega,mathcal A,operatorname P)$ be a probability space


    • $left(Y^{(n)}_kright)_{kinmathbb N_0}$ be a time-homogeneous Markov chain on $(Omega,mathcal A,operatorname P)$ and $$X^{(n)}_t=Y^{(n)}_{lfloor ntrfloor};;;text{for all }tin[0,1]$$


    • $(N_t)_{tge0}$ be a Poisson process on $(Omega,mathcal A,operatorname P)$ with intensity $1$ independent of $Y^{(n)}$ for all $ninmathbb N$ and $$Z^{(n)}_t:=begin{cases}Y^{(n)}_{N_{nt}}&text{for }tin[0,1)\ Z^{(n)}_{1-}end{cases}$$ for $ninmathbb N$


    Now, let $tau_0:=0$, $$tau_k:=infleft{t>tau_{k-1}:Delta N_t=1right};;;text{for }kinmathbb N$$ as well as $$tau^{(n)}_k:=frac{tau_k}n;;;text{for }kinmathbb N$$ and $$lambda^{(n)}_t:=sum_{k=0}^infty 1_{left[frac kn,:frac{k+1}nright)}(t)left(tau^{(n)}_k+(nt-k)left(tau^{(n)}_{k+1}-tau^{(n)}_kright)right);;;text{for }tge0$$ for $ninmathbb N$.




    How can we show that $$sup_{tge0}left|lambda^{(n)}_t-tright|=sup_{tin[0,:1)}left|frac{N_{nt}}n-tright|tag1$$ for all $ninmathbb N$? (I'm unsure whether there isn't an error in the domain of one of the suprema. I could imagine that the left should be taken only over $[0,1)$ or the right actually over $[0,infty)$.)




    I've read that we obtain claim by noting that $N_{nt}=lfloor nfrac{N_{nt}}nrfloor$ for all $tge0$ and $ninmathbb N$, but while that's trivially true, I don't see how we can make use of it.



    Moreover, I've read that the supremum is attained at one of the jump times (I guess the jump times of $X^{(n)}$, i.e. $frac kn$ for $kinmathbb N$, are meant), but I don't know why.



    However, we may observe the following: Let $tinleft[frac kn,frac{k+1}nright)$. Then, there is an $alphain[0,1)$ with $$t=frac{k+alpha}n$$ and hence $$lambda^{(n)}_t-t=left(tau^{(n)}_k-frac knright)+left(tau^{(n)}_{k+1}-tau^{(n)}_kright)alpha.tag2$$ Since this is linear in $alpha$, the supremum of $(2)$ is attained for $alpha=0$ or $alpha=1$. Thus, we should obtain $$sup_{tge0}left|lambda^{(n)}_t-tright|=sup_{kinmathbb N_0}left|tau^{(n)}_k-frac knright|=frac1nsup_{kinmathbb N_0}left|tau_k-kright|tag3.$$ Maybe we need to use $k=N_{tau_k}$ almost surely such that $$sup_{tge0}left|lambda^{(n)}_t-tright|=sup_{kinmathbb N_0}left|frac{N_{ntau^{(n)}_k}}n-tau^{(n)}_kright|tag4;;;text{almost surely}.$$ Now, clearly, $left{N_{ntau^{(n)}_k(omega)}(omega):kinmathbb N_0right}=left{N_{tau_k(omega)}(omega):kinmathbb N_0right}=left{N_t(omega):tge0right}$, but this still doesn't yield $(1)$. However, it yields $$left[tau^{(n)}_k,tau^{(n)}_{k+1}right)ni tmapstofrac{N_{nt}}n-t=k-t$$ which clearly attains its supremum at $t=tau^{(n)}_k$ or $t=tau^{(n)}_{k+1}$.



    We may note that $left(frac{N_{nt}}n-tright)_{tge0}$ is a martingale, but I'm not sure if we need this fact here.










    share|cite|improve this question











    $endgroup$















      1












      1








      1





      $begingroup$


      Let





      • $(Omega,mathcal A,operatorname P)$ be a probability space


      • $left(Y^{(n)}_kright)_{kinmathbb N_0}$ be a time-homogeneous Markov chain on $(Omega,mathcal A,operatorname P)$ and $$X^{(n)}_t=Y^{(n)}_{lfloor ntrfloor};;;text{for all }tin[0,1]$$


      • $(N_t)_{tge0}$ be a Poisson process on $(Omega,mathcal A,operatorname P)$ with intensity $1$ independent of $Y^{(n)}$ for all $ninmathbb N$ and $$Z^{(n)}_t:=begin{cases}Y^{(n)}_{N_{nt}}&text{for }tin[0,1)\ Z^{(n)}_{1-}end{cases}$$ for $ninmathbb N$


      Now, let $tau_0:=0$, $$tau_k:=infleft{t>tau_{k-1}:Delta N_t=1right};;;text{for }kinmathbb N$$ as well as $$tau^{(n)}_k:=frac{tau_k}n;;;text{for }kinmathbb N$$ and $$lambda^{(n)}_t:=sum_{k=0}^infty 1_{left[frac kn,:frac{k+1}nright)}(t)left(tau^{(n)}_k+(nt-k)left(tau^{(n)}_{k+1}-tau^{(n)}_kright)right);;;text{for }tge0$$ for $ninmathbb N$.




      How can we show that $$sup_{tge0}left|lambda^{(n)}_t-tright|=sup_{tin[0,:1)}left|frac{N_{nt}}n-tright|tag1$$ for all $ninmathbb N$? (I'm unsure whether there isn't an error in the domain of one of the suprema. I could imagine that the left should be taken only over $[0,1)$ or the right actually over $[0,infty)$.)




      I've read that we obtain claim by noting that $N_{nt}=lfloor nfrac{N_{nt}}nrfloor$ for all $tge0$ and $ninmathbb N$, but while that's trivially true, I don't see how we can make use of it.



      Moreover, I've read that the supremum is attained at one of the jump times (I guess the jump times of $X^{(n)}$, i.e. $frac kn$ for $kinmathbb N$, are meant), but I don't know why.



      However, we may observe the following: Let $tinleft[frac kn,frac{k+1}nright)$. Then, there is an $alphain[0,1)$ with $$t=frac{k+alpha}n$$ and hence $$lambda^{(n)}_t-t=left(tau^{(n)}_k-frac knright)+left(tau^{(n)}_{k+1}-tau^{(n)}_kright)alpha.tag2$$ Since this is linear in $alpha$, the supremum of $(2)$ is attained for $alpha=0$ or $alpha=1$. Thus, we should obtain $$sup_{tge0}left|lambda^{(n)}_t-tright|=sup_{kinmathbb N_0}left|tau^{(n)}_k-frac knright|=frac1nsup_{kinmathbb N_0}left|tau_k-kright|tag3.$$ Maybe we need to use $k=N_{tau_k}$ almost surely such that $$sup_{tge0}left|lambda^{(n)}_t-tright|=sup_{kinmathbb N_0}left|frac{N_{ntau^{(n)}_k}}n-tau^{(n)}_kright|tag4;;;text{almost surely}.$$ Now, clearly, $left{N_{ntau^{(n)}_k(omega)}(omega):kinmathbb N_0right}=left{N_{tau_k(omega)}(omega):kinmathbb N_0right}=left{N_t(omega):tge0right}$, but this still doesn't yield $(1)$. However, it yields $$left[tau^{(n)}_k,tau^{(n)}_{k+1}right)ni tmapstofrac{N_{nt}}n-t=k-t$$ which clearly attains its supremum at $t=tau^{(n)}_k$ or $t=tau^{(n)}_{k+1}$.



      We may note that $left(frac{N_{nt}}n-tright)_{tge0}$ is a martingale, but I'm not sure if we need this fact here.










      share|cite|improve this question











      $endgroup$




      Let





      • $(Omega,mathcal A,operatorname P)$ be a probability space


      • $left(Y^{(n)}_kright)_{kinmathbb N_0}$ be a time-homogeneous Markov chain on $(Omega,mathcal A,operatorname P)$ and $$X^{(n)}_t=Y^{(n)}_{lfloor ntrfloor};;;text{for all }tin[0,1]$$


      • $(N_t)_{tge0}$ be a Poisson process on $(Omega,mathcal A,operatorname P)$ with intensity $1$ independent of $Y^{(n)}$ for all $ninmathbb N$ and $$Z^{(n)}_t:=begin{cases}Y^{(n)}_{N_{nt}}&text{for }tin[0,1)\ Z^{(n)}_{1-}end{cases}$$ for $ninmathbb N$


      Now, let $tau_0:=0$, $$tau_k:=infleft{t>tau_{k-1}:Delta N_t=1right};;;text{for }kinmathbb N$$ as well as $$tau^{(n)}_k:=frac{tau_k}n;;;text{for }kinmathbb N$$ and $$lambda^{(n)}_t:=sum_{k=0}^infty 1_{left[frac kn,:frac{k+1}nright)}(t)left(tau^{(n)}_k+(nt-k)left(tau^{(n)}_{k+1}-tau^{(n)}_kright)right);;;text{for }tge0$$ for $ninmathbb N$.




      How can we show that $$sup_{tge0}left|lambda^{(n)}_t-tright|=sup_{tin[0,:1)}left|frac{N_{nt}}n-tright|tag1$$ for all $ninmathbb N$? (I'm unsure whether there isn't an error in the domain of one of the suprema. I could imagine that the left should be taken only over $[0,1)$ or the right actually over $[0,infty)$.)




      I've read that we obtain claim by noting that $N_{nt}=lfloor nfrac{N_{nt}}nrfloor$ for all $tge0$ and $ninmathbb N$, but while that's trivially true, I don't see how we can make use of it.



      Moreover, I've read that the supremum is attained at one of the jump times (I guess the jump times of $X^{(n)}$, i.e. $frac kn$ for $kinmathbb N$, are meant), but I don't know why.



      However, we may observe the following: Let $tinleft[frac kn,frac{k+1}nright)$. Then, there is an $alphain[0,1)$ with $$t=frac{k+alpha}n$$ and hence $$lambda^{(n)}_t-t=left(tau^{(n)}_k-frac knright)+left(tau^{(n)}_{k+1}-tau^{(n)}_kright)alpha.tag2$$ Since this is linear in $alpha$, the supremum of $(2)$ is attained for $alpha=0$ or $alpha=1$. Thus, we should obtain $$sup_{tge0}left|lambda^{(n)}_t-tright|=sup_{kinmathbb N_0}left|tau^{(n)}_k-frac knright|=frac1nsup_{kinmathbb N_0}left|tau_k-kright|tag3.$$ Maybe we need to use $k=N_{tau_k}$ almost surely such that $$sup_{tge0}left|lambda^{(n)}_t-tright|=sup_{kinmathbb N_0}left|frac{N_{ntau^{(n)}_k}}n-tau^{(n)}_kright|tag4;;;text{almost surely}.$$ Now, clearly, $left{N_{ntau^{(n)}_k(omega)}(omega):kinmathbb N_0right}=left{N_{tau_k(omega)}(omega):kinmathbb N_0right}=left{N_t(omega):tge0right}$, but this still doesn't yield $(1)$. However, it yields $$left[tau^{(n)}_k,tau^{(n)}_{k+1}right)ni tmapstofrac{N_{nt}}n-t=k-t$$ which clearly attains its supremum at $t=tau^{(n)}_k$ or $t=tau^{(n)}_{k+1}$.



      We may note that $left(frac{N_{nt}}n-tright)_{tge0}$ is a martingale, but I'm not sure if we need this fact here.







      probability-theory stochastic-processes stochastic-analysis poisson-process skorohod-space






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 8 '18 at 11:56







      0xbadf00d

















      asked Dec 7 '18 at 20:14









      0xbadf00d0xbadf00d

      1,93641531




      1,93641531






















          0






          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3030327%2frandom-time-change-for-a-poisson-process-and-convergence-with-respect-to-the-sko%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3030327%2frandom-time-change-for-a-poisson-process-and-convergence-with-respect-to-the-sko%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Ellipse (mathématiques)

          Quarter-circle Tiles

          Mont Emei