Divisors of a $ k $-multiperfect number
$begingroup$
Let $ n $ be a $ k $-multiperfect number. Denote by $ d_m $ its $ m $ smallest divisor, and $ n_{m} $ the number of divisors of $ n $ divisible by $ d_m $. Is there for all $ 2leq mleqtau(n) $ an integer $ s(m) $ such that $ n_m=d_{s(m)} $? Does the function $ s $ admit a fixed point ?
Edit : actually $ n_{m}=tau(n/d_{m}) $. A sufficient condition for a number $ n $ to fulfill $ d=tau(n/d) $ is to take $ n=prod_{r}p_{r}^{p_{sigma(r)}-1} $ with $ sigma $ a permutation of the set of primes $ p $ such that $v_{p}(n)geq 1 $ and $d=prod_{p, v_{p}(n)geq 1}p $ .
number-theory perfect-numbers
$endgroup$
add a comment |
$begingroup$
Let $ n $ be a $ k $-multiperfect number. Denote by $ d_m $ its $ m $ smallest divisor, and $ n_{m} $ the number of divisors of $ n $ divisible by $ d_m $. Is there for all $ 2leq mleqtau(n) $ an integer $ s(m) $ such that $ n_m=d_{s(m)} $? Does the function $ s $ admit a fixed point ?
Edit : actually $ n_{m}=tau(n/d_{m}) $. A sufficient condition for a number $ n $ to fulfill $ d=tau(n/d) $ is to take $ n=prod_{r}p_{r}^{p_{sigma(r)}-1} $ with $ sigma $ a permutation of the set of primes $ p $ such that $v_{p}(n)geq 1 $ and $d=prod_{p, v_{p}(n)geq 1}p $ .
number-theory perfect-numbers
$endgroup$
$begingroup$
I am not sure, but maybe you could use a result in Dagal's A Lower Bound for $tau(n)$ of $k$-Multiperfect Number?
$endgroup$
– Jose Arnaldo Bebita Dris
Feb 4 at 4:53
add a comment |
$begingroup$
Let $ n $ be a $ k $-multiperfect number. Denote by $ d_m $ its $ m $ smallest divisor, and $ n_{m} $ the number of divisors of $ n $ divisible by $ d_m $. Is there for all $ 2leq mleqtau(n) $ an integer $ s(m) $ such that $ n_m=d_{s(m)} $? Does the function $ s $ admit a fixed point ?
Edit : actually $ n_{m}=tau(n/d_{m}) $. A sufficient condition for a number $ n $ to fulfill $ d=tau(n/d) $ is to take $ n=prod_{r}p_{r}^{p_{sigma(r)}-1} $ with $ sigma $ a permutation of the set of primes $ p $ such that $v_{p}(n)geq 1 $ and $d=prod_{p, v_{p}(n)geq 1}p $ .
number-theory perfect-numbers
$endgroup$
Let $ n $ be a $ k $-multiperfect number. Denote by $ d_m $ its $ m $ smallest divisor, and $ n_{m} $ the number of divisors of $ n $ divisible by $ d_m $. Is there for all $ 2leq mleqtau(n) $ an integer $ s(m) $ such that $ n_m=d_{s(m)} $? Does the function $ s $ admit a fixed point ?
Edit : actually $ n_{m}=tau(n/d_{m}) $. A sufficient condition for a number $ n $ to fulfill $ d=tau(n/d) $ is to take $ n=prod_{r}p_{r}^{p_{sigma(r)}-1} $ with $ sigma $ a permutation of the set of primes $ p $ such that $v_{p}(n)geq 1 $ and $d=prod_{p, v_{p}(n)geq 1}p $ .
number-theory perfect-numbers
number-theory perfect-numbers
edited Dec 23 '18 at 22:19
Sylvain Julien
asked Dec 23 '18 at 21:02
Sylvain JulienSylvain Julien
1,135918
1,135918
$begingroup$
I am not sure, but maybe you could use a result in Dagal's A Lower Bound for $tau(n)$ of $k$-Multiperfect Number?
$endgroup$
– Jose Arnaldo Bebita Dris
Feb 4 at 4:53
add a comment |
$begingroup$
I am not sure, but maybe you could use a result in Dagal's A Lower Bound for $tau(n)$ of $k$-Multiperfect Number?
$endgroup$
– Jose Arnaldo Bebita Dris
Feb 4 at 4:53
$begingroup$
I am not sure, but maybe you could use a result in Dagal's A Lower Bound for $tau(n)$ of $k$-Multiperfect Number?
$endgroup$
– Jose Arnaldo Bebita Dris
Feb 4 at 4:53
$begingroup$
I am not sure, but maybe you could use a result in Dagal's A Lower Bound for $tau(n)$ of $k$-Multiperfect Number?
$endgroup$
– Jose Arnaldo Bebita Dris
Feb 4 at 4:53
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3050701%2fdivisors-of-a-k-multiperfect-number%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3050701%2fdivisors-of-a-k-multiperfect-number%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
I am not sure, but maybe you could use a result in Dagal's A Lower Bound for $tau(n)$ of $k$-Multiperfect Number?
$endgroup$
– Jose Arnaldo Bebita Dris
Feb 4 at 4:53