Let $V=mathbb{Z}^2$ and let $L$ be the submodule of $V$ spanned by the columns of $A=begin{bmatrix} 6 & 4...












1












$begingroup$


Let $V=mathbb{Z}^2$ and let $L$ be the submodule of $V$ spanned by the columns of $A=begin{bmatrix} 6 & 4 \8 & 12 end{bmatrix}$. Find a basis $(overrightarrow{alpha_1}, overrightarrow{alpha_2})$ of $V$ and integers $c_1,c_2$ so that $c_1overrightarrow{alpha_1}$, $c_2overrightarrow{alpha_2}$ is a basis for $L$.



So I find that the characteristic polynomial for this matrix is $x^2-18x+40$. Hence it's roots are $x=9pm sqrt{41}$.



So my first question is: Can you have a submodule of rationals in a module over the integers?



If so, then I start to find the eigenvectors
$$
begin{bmatrix} 3pm sqrt{41} & -4 \ -8 & -3pm sqrt{41} end{bmatrix} = begin{bmatrix} 3 & -4 \ -8 & -3 end{bmatrix} pm sqrt{41} cdot I
$$

Since the since term in the sum is a linear combination of the basis in $mathbb{Z}$, I disregarded it and try to find the eigenvector using the first term.



(Is this correct?)










share|cite|improve this question











$endgroup$












  • $begingroup$
    Why are you trying to find the eigenvalues of $A$? For your other question: yes, you can have a submodule of rations in a module over the integers (let the module be $mathbb{Q}$?). I suspect you meant to ask something else, and if so, please phrase your question more clearly.
    $endgroup$
    – Aniruddh Agarwal
    Dec 24 '18 at 8:35










  • $begingroup$
    Then how do I find the basis for $L$?
    $endgroup$
    – Username Unknown
    Dec 24 '18 at 14:41






  • 1




    $begingroup$
    See en.wikipedia.org/wiki/Smith_normal_form
    $endgroup$
    – lhf
    Dec 24 '18 at 14:56
















1












$begingroup$


Let $V=mathbb{Z}^2$ and let $L$ be the submodule of $V$ spanned by the columns of $A=begin{bmatrix} 6 & 4 \8 & 12 end{bmatrix}$. Find a basis $(overrightarrow{alpha_1}, overrightarrow{alpha_2})$ of $V$ and integers $c_1,c_2$ so that $c_1overrightarrow{alpha_1}$, $c_2overrightarrow{alpha_2}$ is a basis for $L$.



So I find that the characteristic polynomial for this matrix is $x^2-18x+40$. Hence it's roots are $x=9pm sqrt{41}$.



So my first question is: Can you have a submodule of rationals in a module over the integers?



If so, then I start to find the eigenvectors
$$
begin{bmatrix} 3pm sqrt{41} & -4 \ -8 & -3pm sqrt{41} end{bmatrix} = begin{bmatrix} 3 & -4 \ -8 & -3 end{bmatrix} pm sqrt{41} cdot I
$$

Since the since term in the sum is a linear combination of the basis in $mathbb{Z}$, I disregarded it and try to find the eigenvector using the first term.



(Is this correct?)










share|cite|improve this question











$endgroup$












  • $begingroup$
    Why are you trying to find the eigenvalues of $A$? For your other question: yes, you can have a submodule of rations in a module over the integers (let the module be $mathbb{Q}$?). I suspect you meant to ask something else, and if so, please phrase your question more clearly.
    $endgroup$
    – Aniruddh Agarwal
    Dec 24 '18 at 8:35










  • $begingroup$
    Then how do I find the basis for $L$?
    $endgroup$
    – Username Unknown
    Dec 24 '18 at 14:41






  • 1




    $begingroup$
    See en.wikipedia.org/wiki/Smith_normal_form
    $endgroup$
    – lhf
    Dec 24 '18 at 14:56














1












1








1





$begingroup$


Let $V=mathbb{Z}^2$ and let $L$ be the submodule of $V$ spanned by the columns of $A=begin{bmatrix} 6 & 4 \8 & 12 end{bmatrix}$. Find a basis $(overrightarrow{alpha_1}, overrightarrow{alpha_2})$ of $V$ and integers $c_1,c_2$ so that $c_1overrightarrow{alpha_1}$, $c_2overrightarrow{alpha_2}$ is a basis for $L$.



So I find that the characteristic polynomial for this matrix is $x^2-18x+40$. Hence it's roots are $x=9pm sqrt{41}$.



So my first question is: Can you have a submodule of rationals in a module over the integers?



If so, then I start to find the eigenvectors
$$
begin{bmatrix} 3pm sqrt{41} & -4 \ -8 & -3pm sqrt{41} end{bmatrix} = begin{bmatrix} 3 & -4 \ -8 & -3 end{bmatrix} pm sqrt{41} cdot I
$$

Since the since term in the sum is a linear combination of the basis in $mathbb{Z}$, I disregarded it and try to find the eigenvector using the first term.



(Is this correct?)










share|cite|improve this question











$endgroup$




Let $V=mathbb{Z}^2$ and let $L$ be the submodule of $V$ spanned by the columns of $A=begin{bmatrix} 6 & 4 \8 & 12 end{bmatrix}$. Find a basis $(overrightarrow{alpha_1}, overrightarrow{alpha_2})$ of $V$ and integers $c_1,c_2$ so that $c_1overrightarrow{alpha_1}$, $c_2overrightarrow{alpha_2}$ is a basis for $L$.



So I find that the characteristic polynomial for this matrix is $x^2-18x+40$. Hence it's roots are $x=9pm sqrt{41}$.



So my first question is: Can you have a submodule of rationals in a module over the integers?



If so, then I start to find the eigenvectors
$$
begin{bmatrix} 3pm sqrt{41} & -4 \ -8 & -3pm sqrt{41} end{bmatrix} = begin{bmatrix} 3 & -4 \ -8 & -3 end{bmatrix} pm sqrt{41} cdot I
$$

Since the since term in the sum is a linear combination of the basis in $mathbb{Z}$, I disregarded it and try to find the eigenvector using the first term.



(Is this correct?)







linear-algebra






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 24 '18 at 14:45







Username Unknown

















asked Dec 24 '18 at 2:02









Username UnknownUsername Unknown

1,26442158




1,26442158












  • $begingroup$
    Why are you trying to find the eigenvalues of $A$? For your other question: yes, you can have a submodule of rations in a module over the integers (let the module be $mathbb{Q}$?). I suspect you meant to ask something else, and if so, please phrase your question more clearly.
    $endgroup$
    – Aniruddh Agarwal
    Dec 24 '18 at 8:35










  • $begingroup$
    Then how do I find the basis for $L$?
    $endgroup$
    – Username Unknown
    Dec 24 '18 at 14:41






  • 1




    $begingroup$
    See en.wikipedia.org/wiki/Smith_normal_form
    $endgroup$
    – lhf
    Dec 24 '18 at 14:56


















  • $begingroup$
    Why are you trying to find the eigenvalues of $A$? For your other question: yes, you can have a submodule of rations in a module over the integers (let the module be $mathbb{Q}$?). I suspect you meant to ask something else, and if so, please phrase your question more clearly.
    $endgroup$
    – Aniruddh Agarwal
    Dec 24 '18 at 8:35










  • $begingroup$
    Then how do I find the basis for $L$?
    $endgroup$
    – Username Unknown
    Dec 24 '18 at 14:41






  • 1




    $begingroup$
    See en.wikipedia.org/wiki/Smith_normal_form
    $endgroup$
    – lhf
    Dec 24 '18 at 14:56
















$begingroup$
Why are you trying to find the eigenvalues of $A$? For your other question: yes, you can have a submodule of rations in a module over the integers (let the module be $mathbb{Q}$?). I suspect you meant to ask something else, and if so, please phrase your question more clearly.
$endgroup$
– Aniruddh Agarwal
Dec 24 '18 at 8:35




$begingroup$
Why are you trying to find the eigenvalues of $A$? For your other question: yes, you can have a submodule of rations in a module over the integers (let the module be $mathbb{Q}$?). I suspect you meant to ask something else, and if so, please phrase your question more clearly.
$endgroup$
– Aniruddh Agarwal
Dec 24 '18 at 8:35












$begingroup$
Then how do I find the basis for $L$?
$endgroup$
– Username Unknown
Dec 24 '18 at 14:41




$begingroup$
Then how do I find the basis for $L$?
$endgroup$
– Username Unknown
Dec 24 '18 at 14:41




1




1




$begingroup$
See en.wikipedia.org/wiki/Smith_normal_form
$endgroup$
– lhf
Dec 24 '18 at 14:56




$begingroup$
See en.wikipedia.org/wiki/Smith_normal_form
$endgroup$
– lhf
Dec 24 '18 at 14:56










1 Answer
1






active

oldest

votes


















1












$begingroup$

Perform elementary column operations:
$$
begin{bmatrix} 6 & 4 \8 & 12 end{bmatrix}
to
begin{bmatrix} 2 & 4 \-4 & 12 end{bmatrix}
to
begin{bmatrix} 2 & 0 \-4 & 20 end{bmatrix}
$$

Compare this with
$$
begin{bmatrix} 1 & 0 \-2 & 1 end{bmatrix}
$$

whose columns are a basis for $V$.






share|cite|improve this answer











$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3050879%2flet-v-mathbbz2-and-let-l-be-the-submodule-of-v-spanned-by-the-columns%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1












    $begingroup$

    Perform elementary column operations:
    $$
    begin{bmatrix} 6 & 4 \8 & 12 end{bmatrix}
    to
    begin{bmatrix} 2 & 4 \-4 & 12 end{bmatrix}
    to
    begin{bmatrix} 2 & 0 \-4 & 20 end{bmatrix}
    $$

    Compare this with
    $$
    begin{bmatrix} 1 & 0 \-2 & 1 end{bmatrix}
    $$

    whose columns are a basis for $V$.






    share|cite|improve this answer











    $endgroup$


















      1












      $begingroup$

      Perform elementary column operations:
      $$
      begin{bmatrix} 6 & 4 \8 & 12 end{bmatrix}
      to
      begin{bmatrix} 2 & 4 \-4 & 12 end{bmatrix}
      to
      begin{bmatrix} 2 & 0 \-4 & 20 end{bmatrix}
      $$

      Compare this with
      $$
      begin{bmatrix} 1 & 0 \-2 & 1 end{bmatrix}
      $$

      whose columns are a basis for $V$.






      share|cite|improve this answer











      $endgroup$
















        1












        1








        1





        $begingroup$

        Perform elementary column operations:
        $$
        begin{bmatrix} 6 & 4 \8 & 12 end{bmatrix}
        to
        begin{bmatrix} 2 & 4 \-4 & 12 end{bmatrix}
        to
        begin{bmatrix} 2 & 0 \-4 & 20 end{bmatrix}
        $$

        Compare this with
        $$
        begin{bmatrix} 1 & 0 \-2 & 1 end{bmatrix}
        $$

        whose columns are a basis for $V$.






        share|cite|improve this answer











        $endgroup$



        Perform elementary column operations:
        $$
        begin{bmatrix} 6 & 4 \8 & 12 end{bmatrix}
        to
        begin{bmatrix} 2 & 4 \-4 & 12 end{bmatrix}
        to
        begin{bmatrix} 2 & 0 \-4 & 20 end{bmatrix}
        $$

        Compare this with
        $$
        begin{bmatrix} 1 & 0 \-2 & 1 end{bmatrix}
        $$

        whose columns are a basis for $V$.







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Dec 24 '18 at 15:00

























        answered Dec 24 '18 at 14:52









        lhflhf

        165k10171396




        165k10171396






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3050879%2flet-v-mathbbz2-and-let-l-be-the-submodule-of-v-spanned-by-the-columns%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Ellipse (mathématiques)

            Quarter-circle Tiles

            Mont Emei