Let $V=mathbb{Z}^2$ and let $L$ be the submodule of $V$ spanned by the columns of $A=begin{bmatrix} 6 & 4...
$begingroup$
Let $V=mathbb{Z}^2$ and let $L$ be the submodule of $V$ spanned by the columns of $A=begin{bmatrix} 6 & 4 \8 & 12 end{bmatrix}$. Find a basis $(overrightarrow{alpha_1}, overrightarrow{alpha_2})$ of $V$ and integers $c_1,c_2$ so that $c_1overrightarrow{alpha_1}$, $c_2overrightarrow{alpha_2}$ is a basis for $L$.
So I find that the characteristic polynomial for this matrix is $x^2-18x+40$. Hence it's roots are $x=9pm sqrt{41}$.
So my first question is: Can you have a submodule of rationals in a module over the integers?
If so, then I start to find the eigenvectors
$$
begin{bmatrix} 3pm sqrt{41} & -4 \ -8 & -3pm sqrt{41} end{bmatrix} = begin{bmatrix} 3 & -4 \ -8 & -3 end{bmatrix} pm sqrt{41} cdot I
$$
Since the since term in the sum is a linear combination of the basis in $mathbb{Z}$, I disregarded it and try to find the eigenvector using the first term.
(Is this correct?)
linear-algebra
$endgroup$
add a comment |
$begingroup$
Let $V=mathbb{Z}^2$ and let $L$ be the submodule of $V$ spanned by the columns of $A=begin{bmatrix} 6 & 4 \8 & 12 end{bmatrix}$. Find a basis $(overrightarrow{alpha_1}, overrightarrow{alpha_2})$ of $V$ and integers $c_1,c_2$ so that $c_1overrightarrow{alpha_1}$, $c_2overrightarrow{alpha_2}$ is a basis for $L$.
So I find that the characteristic polynomial for this matrix is $x^2-18x+40$. Hence it's roots are $x=9pm sqrt{41}$.
So my first question is: Can you have a submodule of rationals in a module over the integers?
If so, then I start to find the eigenvectors
$$
begin{bmatrix} 3pm sqrt{41} & -4 \ -8 & -3pm sqrt{41} end{bmatrix} = begin{bmatrix} 3 & -4 \ -8 & -3 end{bmatrix} pm sqrt{41} cdot I
$$
Since the since term in the sum is a linear combination of the basis in $mathbb{Z}$, I disregarded it and try to find the eigenvector using the first term.
(Is this correct?)
linear-algebra
$endgroup$
$begingroup$
Why are you trying to find the eigenvalues of $A$? For your other question: yes, you can have a submodule of rations in a module over the integers (let the module be $mathbb{Q}$?). I suspect you meant to ask something else, and if so, please phrase your question more clearly.
$endgroup$
– Aniruddh Agarwal
Dec 24 '18 at 8:35
$begingroup$
Then how do I find the basis for $L$?
$endgroup$
– Username Unknown
Dec 24 '18 at 14:41
1
$begingroup$
See en.wikipedia.org/wiki/Smith_normal_form
$endgroup$
– lhf
Dec 24 '18 at 14:56
add a comment |
$begingroup$
Let $V=mathbb{Z}^2$ and let $L$ be the submodule of $V$ spanned by the columns of $A=begin{bmatrix} 6 & 4 \8 & 12 end{bmatrix}$. Find a basis $(overrightarrow{alpha_1}, overrightarrow{alpha_2})$ of $V$ and integers $c_1,c_2$ so that $c_1overrightarrow{alpha_1}$, $c_2overrightarrow{alpha_2}$ is a basis for $L$.
So I find that the characteristic polynomial for this matrix is $x^2-18x+40$. Hence it's roots are $x=9pm sqrt{41}$.
So my first question is: Can you have a submodule of rationals in a module over the integers?
If so, then I start to find the eigenvectors
$$
begin{bmatrix} 3pm sqrt{41} & -4 \ -8 & -3pm sqrt{41} end{bmatrix} = begin{bmatrix} 3 & -4 \ -8 & -3 end{bmatrix} pm sqrt{41} cdot I
$$
Since the since term in the sum is a linear combination of the basis in $mathbb{Z}$, I disregarded it and try to find the eigenvector using the first term.
(Is this correct?)
linear-algebra
$endgroup$
Let $V=mathbb{Z}^2$ and let $L$ be the submodule of $V$ spanned by the columns of $A=begin{bmatrix} 6 & 4 \8 & 12 end{bmatrix}$. Find a basis $(overrightarrow{alpha_1}, overrightarrow{alpha_2})$ of $V$ and integers $c_1,c_2$ so that $c_1overrightarrow{alpha_1}$, $c_2overrightarrow{alpha_2}$ is a basis for $L$.
So I find that the characteristic polynomial for this matrix is $x^2-18x+40$. Hence it's roots are $x=9pm sqrt{41}$.
So my first question is: Can you have a submodule of rationals in a module over the integers?
If so, then I start to find the eigenvectors
$$
begin{bmatrix} 3pm sqrt{41} & -4 \ -8 & -3pm sqrt{41} end{bmatrix} = begin{bmatrix} 3 & -4 \ -8 & -3 end{bmatrix} pm sqrt{41} cdot I
$$
Since the since term in the sum is a linear combination of the basis in $mathbb{Z}$, I disregarded it and try to find the eigenvector using the first term.
(Is this correct?)
linear-algebra
linear-algebra
edited Dec 24 '18 at 14:45
Username Unknown
asked Dec 24 '18 at 2:02
Username UnknownUsername Unknown
1,26442158
1,26442158
$begingroup$
Why are you trying to find the eigenvalues of $A$? For your other question: yes, you can have a submodule of rations in a module over the integers (let the module be $mathbb{Q}$?). I suspect you meant to ask something else, and if so, please phrase your question more clearly.
$endgroup$
– Aniruddh Agarwal
Dec 24 '18 at 8:35
$begingroup$
Then how do I find the basis for $L$?
$endgroup$
– Username Unknown
Dec 24 '18 at 14:41
1
$begingroup$
See en.wikipedia.org/wiki/Smith_normal_form
$endgroup$
– lhf
Dec 24 '18 at 14:56
add a comment |
$begingroup$
Why are you trying to find the eigenvalues of $A$? For your other question: yes, you can have a submodule of rations in a module over the integers (let the module be $mathbb{Q}$?). I suspect you meant to ask something else, and if so, please phrase your question more clearly.
$endgroup$
– Aniruddh Agarwal
Dec 24 '18 at 8:35
$begingroup$
Then how do I find the basis for $L$?
$endgroup$
– Username Unknown
Dec 24 '18 at 14:41
1
$begingroup$
See en.wikipedia.org/wiki/Smith_normal_form
$endgroup$
– lhf
Dec 24 '18 at 14:56
$begingroup$
Why are you trying to find the eigenvalues of $A$? For your other question: yes, you can have a submodule of rations in a module over the integers (let the module be $mathbb{Q}$?). I suspect you meant to ask something else, and if so, please phrase your question more clearly.
$endgroup$
– Aniruddh Agarwal
Dec 24 '18 at 8:35
$begingroup$
Why are you trying to find the eigenvalues of $A$? For your other question: yes, you can have a submodule of rations in a module over the integers (let the module be $mathbb{Q}$?). I suspect you meant to ask something else, and if so, please phrase your question more clearly.
$endgroup$
– Aniruddh Agarwal
Dec 24 '18 at 8:35
$begingroup$
Then how do I find the basis for $L$?
$endgroup$
– Username Unknown
Dec 24 '18 at 14:41
$begingroup$
Then how do I find the basis for $L$?
$endgroup$
– Username Unknown
Dec 24 '18 at 14:41
1
1
$begingroup$
See en.wikipedia.org/wiki/Smith_normal_form
$endgroup$
– lhf
Dec 24 '18 at 14:56
$begingroup$
See en.wikipedia.org/wiki/Smith_normal_form
$endgroup$
– lhf
Dec 24 '18 at 14:56
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Perform elementary column operations:
$$
begin{bmatrix} 6 & 4 \8 & 12 end{bmatrix}
to
begin{bmatrix} 2 & 4 \-4 & 12 end{bmatrix}
to
begin{bmatrix} 2 & 0 \-4 & 20 end{bmatrix}
$$
Compare this with
$$
begin{bmatrix} 1 & 0 \-2 & 1 end{bmatrix}
$$
whose columns are a basis for $V$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3050879%2flet-v-mathbbz2-and-let-l-be-the-submodule-of-v-spanned-by-the-columns%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Perform elementary column operations:
$$
begin{bmatrix} 6 & 4 \8 & 12 end{bmatrix}
to
begin{bmatrix} 2 & 4 \-4 & 12 end{bmatrix}
to
begin{bmatrix} 2 & 0 \-4 & 20 end{bmatrix}
$$
Compare this with
$$
begin{bmatrix} 1 & 0 \-2 & 1 end{bmatrix}
$$
whose columns are a basis for $V$.
$endgroup$
add a comment |
$begingroup$
Perform elementary column operations:
$$
begin{bmatrix} 6 & 4 \8 & 12 end{bmatrix}
to
begin{bmatrix} 2 & 4 \-4 & 12 end{bmatrix}
to
begin{bmatrix} 2 & 0 \-4 & 20 end{bmatrix}
$$
Compare this with
$$
begin{bmatrix} 1 & 0 \-2 & 1 end{bmatrix}
$$
whose columns are a basis for $V$.
$endgroup$
add a comment |
$begingroup$
Perform elementary column operations:
$$
begin{bmatrix} 6 & 4 \8 & 12 end{bmatrix}
to
begin{bmatrix} 2 & 4 \-4 & 12 end{bmatrix}
to
begin{bmatrix} 2 & 0 \-4 & 20 end{bmatrix}
$$
Compare this with
$$
begin{bmatrix} 1 & 0 \-2 & 1 end{bmatrix}
$$
whose columns are a basis for $V$.
$endgroup$
Perform elementary column operations:
$$
begin{bmatrix} 6 & 4 \8 & 12 end{bmatrix}
to
begin{bmatrix} 2 & 4 \-4 & 12 end{bmatrix}
to
begin{bmatrix} 2 & 0 \-4 & 20 end{bmatrix}
$$
Compare this with
$$
begin{bmatrix} 1 & 0 \-2 & 1 end{bmatrix}
$$
whose columns are a basis for $V$.
edited Dec 24 '18 at 15:00
answered Dec 24 '18 at 14:52
lhflhf
165k10171396
165k10171396
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3050879%2flet-v-mathbbz2-and-let-l-be-the-submodule-of-v-spanned-by-the-columns%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Why are you trying to find the eigenvalues of $A$? For your other question: yes, you can have a submodule of rations in a module over the integers (let the module be $mathbb{Q}$?). I suspect you meant to ask something else, and if so, please phrase your question more clearly.
$endgroup$
– Aniruddh Agarwal
Dec 24 '18 at 8:35
$begingroup$
Then how do I find the basis for $L$?
$endgroup$
– Username Unknown
Dec 24 '18 at 14:41
1
$begingroup$
See en.wikipedia.org/wiki/Smith_normal_form
$endgroup$
– lhf
Dec 24 '18 at 14:56