Proving that $int_0^1 frac{arctan x}{x}lnleft(frac{1+x^2}{(1-x)^2}right)dx=frac{pi^3}{16}$












30












$begingroup$


The following integral was proposed by Cornel Ioan Valean and appeared as Problem $12054$ in the American Mathematical Monthly earlier this year.




Prove $$int_0^1 frac{arctan x}{x}lnleft(frac{1+x^2}{(1-x)^2}right)dx=frac{pi^3}{16}$$




I had small tries for it, such as:
Letting $x=tan t$ which gives:
$$I=int_0^1 frac{arctan x}{x}lnleft(frac{1+x^2}{(1-x)^2}right)dx=-int_0^frac{pi}{4}frac{t}{sin t}ln(1-sin(2t))dt=$$
$$overset{2t=x}=-frac12 underset{=J}{int_0^frac{pi}{2}frac{x}{sin x} ln(1-sin x)dx}=-frac12 int_0^frac{pi}{2} xln(1-sin x) left(lnleft(tan frac{x}{2}right)right)'dx=$$
$$overset{IBP}=frac12int_0^frac{pi}{2} lnleft(1-sin xright)lnleft(tan frac{x}{2}right)dx+frac12 int_0^frac{pi}{2} frac{xcos x}{sin x-1}lnleft(tan frac{x}{2}right)dx$$
Or to employ Feynman's trick for the first integral $(J)$ in the second row. $$J(t)=int_0^frac{pi}{2} frac{xln(1-tsin x)}{sin x}dxRightarrow J'(t)=int_0^frac{pi}{2} frac{x}{1-tsin x}dx$$ But even so I don't see a how to obtain a closed from for the last one. Also with a different parameter: $$J(t)=int_0^frac{pi}{2} frac{text{arccot} (t cot x)ln(1-sin x)}{sin x}dx$$
$$Rightarrow J'(t)=-int_0^frac{pi}{2} frac{ln(1-sin x)cos x}{1+t^2 cot^2x}frac{dx}{sin^2x}overset{sin x=y}=int_0^1 frac{ln(1-y)}{1+t^2left(1-frac{1}{y^2}right)}frac{dy}{y^2}$$





Also from here we have the following relation:
$$int_0^1 frac{arctan x ln(1+x^2)}{x} dx =frac23 int_0^1 frac{arctan x ln(1+x)}{x}dx$$
Thus we can rewrite the integral as:
$$I=frac23 int_0^1 frac{arctan x ln(1+x)}{x}dx -2int_0^1 frac{arctan x ln(1-x)}{x}dx$$
$$=frac23 int_0^1 int_0^1 frac{ln(1+x)-3ln(1-x)}{1+x^2y^2}dydx=frac23 int_0^1 int_t^1 frac{ln(1+x)-3ln(1-x)}{1+t^2}dxdt $$





Another option might be to rewrite:
$$lnleft(frac{1+x^2}{(1-x)^2}right)= lnleft(frac{1+x}{1-x}right)+lnleft(frac{1+x^2}{1-x^2}right)$$
$$Rightarrow I= int_0^1 frac{arctan x}{x}lnleft(frac{1+x}{1-x}right)dx+int_0^1 frac{arctan x}{x}lnleft(frac{1+x^2}{1-x^2}right)dx$$
And now to use the power expansion of the log functions inside to obtain:
$$I=sum_{n=0}^infty frac{2}{2n+1}int_0^1 frac{arctan x}{x} , left(x^{2n+1}+x^{4n+2}right)dx=sum_{n=0}^infty frac{2}{2n+1}int_0^1int_0^1 frac{left(x^{2n+1}+x^{4n+2}right)}{1+y^2x^2}dydx$$





In the meantime I found one nice solution by Roberto Tauraso here.



This seems like an awesome integral and I would like to learn more so I am searching for more approaches.
Would any of you who also already solve it and submitted the answer to the AMM or know how to solve this integral kindly share the solution here?



Edit: Another impressive solution due to Yaghoub Sharifi is found here.










share|cite|improve this question











$endgroup$








  • 3




    $begingroup$
    I was able to break it down to an evaluation of harmonic sums $$I=frac{3pi^3}{32}-sum_{n=0}^{infty}frac{frac12left[H_{n/2}-H_{(n-1)/2}right]+frac14left[H_{n+1/4}-H_{n-1/4}right]}{(2n+1)^2}$$ the latter sum should equal $pi^3/32$ which seems to work out numerically but honestly speaking I am lost from hereon. Using the well-known result $beta(3)=pi^3/32$ one could conjecture that the combination of harmonic sums has to come out equal to $(-1)^n/(2n+1)$ in order to complete the representation of $beta(3)$.
    $endgroup$
    – mrtaurho
    Dec 24 '18 at 1:48






  • 1




    $begingroup$
    I would say this solution here is quite impressive and convincing.
    $endgroup$
    – mrtaurho
    Dec 25 '18 at 15:38
















30












$begingroup$


The following integral was proposed by Cornel Ioan Valean and appeared as Problem $12054$ in the American Mathematical Monthly earlier this year.




Prove $$int_0^1 frac{arctan x}{x}lnleft(frac{1+x^2}{(1-x)^2}right)dx=frac{pi^3}{16}$$




I had small tries for it, such as:
Letting $x=tan t$ which gives:
$$I=int_0^1 frac{arctan x}{x}lnleft(frac{1+x^2}{(1-x)^2}right)dx=-int_0^frac{pi}{4}frac{t}{sin t}ln(1-sin(2t))dt=$$
$$overset{2t=x}=-frac12 underset{=J}{int_0^frac{pi}{2}frac{x}{sin x} ln(1-sin x)dx}=-frac12 int_0^frac{pi}{2} xln(1-sin x) left(lnleft(tan frac{x}{2}right)right)'dx=$$
$$overset{IBP}=frac12int_0^frac{pi}{2} lnleft(1-sin xright)lnleft(tan frac{x}{2}right)dx+frac12 int_0^frac{pi}{2} frac{xcos x}{sin x-1}lnleft(tan frac{x}{2}right)dx$$
Or to employ Feynman's trick for the first integral $(J)$ in the second row. $$J(t)=int_0^frac{pi}{2} frac{xln(1-tsin x)}{sin x}dxRightarrow J'(t)=int_0^frac{pi}{2} frac{x}{1-tsin x}dx$$ But even so I don't see a how to obtain a closed from for the last one. Also with a different parameter: $$J(t)=int_0^frac{pi}{2} frac{text{arccot} (t cot x)ln(1-sin x)}{sin x}dx$$
$$Rightarrow J'(t)=-int_0^frac{pi}{2} frac{ln(1-sin x)cos x}{1+t^2 cot^2x}frac{dx}{sin^2x}overset{sin x=y}=int_0^1 frac{ln(1-y)}{1+t^2left(1-frac{1}{y^2}right)}frac{dy}{y^2}$$





Also from here we have the following relation:
$$int_0^1 frac{arctan x ln(1+x^2)}{x} dx =frac23 int_0^1 frac{arctan x ln(1+x)}{x}dx$$
Thus we can rewrite the integral as:
$$I=frac23 int_0^1 frac{arctan x ln(1+x)}{x}dx -2int_0^1 frac{arctan x ln(1-x)}{x}dx$$
$$=frac23 int_0^1 int_0^1 frac{ln(1+x)-3ln(1-x)}{1+x^2y^2}dydx=frac23 int_0^1 int_t^1 frac{ln(1+x)-3ln(1-x)}{1+t^2}dxdt $$





Another option might be to rewrite:
$$lnleft(frac{1+x^2}{(1-x)^2}right)= lnleft(frac{1+x}{1-x}right)+lnleft(frac{1+x^2}{1-x^2}right)$$
$$Rightarrow I= int_0^1 frac{arctan x}{x}lnleft(frac{1+x}{1-x}right)dx+int_0^1 frac{arctan x}{x}lnleft(frac{1+x^2}{1-x^2}right)dx$$
And now to use the power expansion of the log functions inside to obtain:
$$I=sum_{n=0}^infty frac{2}{2n+1}int_0^1 frac{arctan x}{x} , left(x^{2n+1}+x^{4n+2}right)dx=sum_{n=0}^infty frac{2}{2n+1}int_0^1int_0^1 frac{left(x^{2n+1}+x^{4n+2}right)}{1+y^2x^2}dydx$$





In the meantime I found one nice solution by Roberto Tauraso here.



This seems like an awesome integral and I would like to learn more so I am searching for more approaches.
Would any of you who also already solve it and submitted the answer to the AMM or know how to solve this integral kindly share the solution here?



Edit: Another impressive solution due to Yaghoub Sharifi is found here.










share|cite|improve this question











$endgroup$








  • 3




    $begingroup$
    I was able to break it down to an evaluation of harmonic sums $$I=frac{3pi^3}{32}-sum_{n=0}^{infty}frac{frac12left[H_{n/2}-H_{(n-1)/2}right]+frac14left[H_{n+1/4}-H_{n-1/4}right]}{(2n+1)^2}$$ the latter sum should equal $pi^3/32$ which seems to work out numerically but honestly speaking I am lost from hereon. Using the well-known result $beta(3)=pi^3/32$ one could conjecture that the combination of harmonic sums has to come out equal to $(-1)^n/(2n+1)$ in order to complete the representation of $beta(3)$.
    $endgroup$
    – mrtaurho
    Dec 24 '18 at 1:48






  • 1




    $begingroup$
    I would say this solution here is quite impressive and convincing.
    $endgroup$
    – mrtaurho
    Dec 25 '18 at 15:38














30












30








30


14



$begingroup$


The following integral was proposed by Cornel Ioan Valean and appeared as Problem $12054$ in the American Mathematical Monthly earlier this year.




Prove $$int_0^1 frac{arctan x}{x}lnleft(frac{1+x^2}{(1-x)^2}right)dx=frac{pi^3}{16}$$




I had small tries for it, such as:
Letting $x=tan t$ which gives:
$$I=int_0^1 frac{arctan x}{x}lnleft(frac{1+x^2}{(1-x)^2}right)dx=-int_0^frac{pi}{4}frac{t}{sin t}ln(1-sin(2t))dt=$$
$$overset{2t=x}=-frac12 underset{=J}{int_0^frac{pi}{2}frac{x}{sin x} ln(1-sin x)dx}=-frac12 int_0^frac{pi}{2} xln(1-sin x) left(lnleft(tan frac{x}{2}right)right)'dx=$$
$$overset{IBP}=frac12int_0^frac{pi}{2} lnleft(1-sin xright)lnleft(tan frac{x}{2}right)dx+frac12 int_0^frac{pi}{2} frac{xcos x}{sin x-1}lnleft(tan frac{x}{2}right)dx$$
Or to employ Feynman's trick for the first integral $(J)$ in the second row. $$J(t)=int_0^frac{pi}{2} frac{xln(1-tsin x)}{sin x}dxRightarrow J'(t)=int_0^frac{pi}{2} frac{x}{1-tsin x}dx$$ But even so I don't see a how to obtain a closed from for the last one. Also with a different parameter: $$J(t)=int_0^frac{pi}{2} frac{text{arccot} (t cot x)ln(1-sin x)}{sin x}dx$$
$$Rightarrow J'(t)=-int_0^frac{pi}{2} frac{ln(1-sin x)cos x}{1+t^2 cot^2x}frac{dx}{sin^2x}overset{sin x=y}=int_0^1 frac{ln(1-y)}{1+t^2left(1-frac{1}{y^2}right)}frac{dy}{y^2}$$





Also from here we have the following relation:
$$int_0^1 frac{arctan x ln(1+x^2)}{x} dx =frac23 int_0^1 frac{arctan x ln(1+x)}{x}dx$$
Thus we can rewrite the integral as:
$$I=frac23 int_0^1 frac{arctan x ln(1+x)}{x}dx -2int_0^1 frac{arctan x ln(1-x)}{x}dx$$
$$=frac23 int_0^1 int_0^1 frac{ln(1+x)-3ln(1-x)}{1+x^2y^2}dydx=frac23 int_0^1 int_t^1 frac{ln(1+x)-3ln(1-x)}{1+t^2}dxdt $$





Another option might be to rewrite:
$$lnleft(frac{1+x^2}{(1-x)^2}right)= lnleft(frac{1+x}{1-x}right)+lnleft(frac{1+x^2}{1-x^2}right)$$
$$Rightarrow I= int_0^1 frac{arctan x}{x}lnleft(frac{1+x}{1-x}right)dx+int_0^1 frac{arctan x}{x}lnleft(frac{1+x^2}{1-x^2}right)dx$$
And now to use the power expansion of the log functions inside to obtain:
$$I=sum_{n=0}^infty frac{2}{2n+1}int_0^1 frac{arctan x}{x} , left(x^{2n+1}+x^{4n+2}right)dx=sum_{n=0}^infty frac{2}{2n+1}int_0^1int_0^1 frac{left(x^{2n+1}+x^{4n+2}right)}{1+y^2x^2}dydx$$





In the meantime I found one nice solution by Roberto Tauraso here.



This seems like an awesome integral and I would like to learn more so I am searching for more approaches.
Would any of you who also already solve it and submitted the answer to the AMM or know how to solve this integral kindly share the solution here?



Edit: Another impressive solution due to Yaghoub Sharifi is found here.










share|cite|improve this question











$endgroup$




The following integral was proposed by Cornel Ioan Valean and appeared as Problem $12054$ in the American Mathematical Monthly earlier this year.




Prove $$int_0^1 frac{arctan x}{x}lnleft(frac{1+x^2}{(1-x)^2}right)dx=frac{pi^3}{16}$$




I had small tries for it, such as:
Letting $x=tan t$ which gives:
$$I=int_0^1 frac{arctan x}{x}lnleft(frac{1+x^2}{(1-x)^2}right)dx=-int_0^frac{pi}{4}frac{t}{sin t}ln(1-sin(2t))dt=$$
$$overset{2t=x}=-frac12 underset{=J}{int_0^frac{pi}{2}frac{x}{sin x} ln(1-sin x)dx}=-frac12 int_0^frac{pi}{2} xln(1-sin x) left(lnleft(tan frac{x}{2}right)right)'dx=$$
$$overset{IBP}=frac12int_0^frac{pi}{2} lnleft(1-sin xright)lnleft(tan frac{x}{2}right)dx+frac12 int_0^frac{pi}{2} frac{xcos x}{sin x-1}lnleft(tan frac{x}{2}right)dx$$
Or to employ Feynman's trick for the first integral $(J)$ in the second row. $$J(t)=int_0^frac{pi}{2} frac{xln(1-tsin x)}{sin x}dxRightarrow J'(t)=int_0^frac{pi}{2} frac{x}{1-tsin x}dx$$ But even so I don't see a how to obtain a closed from for the last one. Also with a different parameter: $$J(t)=int_0^frac{pi}{2} frac{text{arccot} (t cot x)ln(1-sin x)}{sin x}dx$$
$$Rightarrow J'(t)=-int_0^frac{pi}{2} frac{ln(1-sin x)cos x}{1+t^2 cot^2x}frac{dx}{sin^2x}overset{sin x=y}=int_0^1 frac{ln(1-y)}{1+t^2left(1-frac{1}{y^2}right)}frac{dy}{y^2}$$





Also from here we have the following relation:
$$int_0^1 frac{arctan x ln(1+x^2)}{x} dx =frac23 int_0^1 frac{arctan x ln(1+x)}{x}dx$$
Thus we can rewrite the integral as:
$$I=frac23 int_0^1 frac{arctan x ln(1+x)}{x}dx -2int_0^1 frac{arctan x ln(1-x)}{x}dx$$
$$=frac23 int_0^1 int_0^1 frac{ln(1+x)-3ln(1-x)}{1+x^2y^2}dydx=frac23 int_0^1 int_t^1 frac{ln(1+x)-3ln(1-x)}{1+t^2}dxdt $$





Another option might be to rewrite:
$$lnleft(frac{1+x^2}{(1-x)^2}right)= lnleft(frac{1+x}{1-x}right)+lnleft(frac{1+x^2}{1-x^2}right)$$
$$Rightarrow I= int_0^1 frac{arctan x}{x}lnleft(frac{1+x}{1-x}right)dx+int_0^1 frac{arctan x}{x}lnleft(frac{1+x^2}{1-x^2}right)dx$$
And now to use the power expansion of the log functions inside to obtain:
$$I=sum_{n=0}^infty frac{2}{2n+1}int_0^1 frac{arctan x}{x} , left(x^{2n+1}+x^{4n+2}right)dx=sum_{n=0}^infty frac{2}{2n+1}int_0^1int_0^1 frac{left(x^{2n+1}+x^{4n+2}right)}{1+y^2x^2}dydx$$





In the meantime I found one nice solution by Roberto Tauraso here.



This seems like an awesome integral and I would like to learn more so I am searching for more approaches.
Would any of you who also already solve it and submitted the answer to the AMM or know how to solve this integral kindly share the solution here?



Edit: Another impressive solution due to Yaghoub Sharifi is found here.







integration definite-integrals logarithms closed-form






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 27 '18 at 12:24







Zacky

















asked Dec 23 '18 at 20:53









ZackyZacky

6,6851958




6,6851958








  • 3




    $begingroup$
    I was able to break it down to an evaluation of harmonic sums $$I=frac{3pi^3}{32}-sum_{n=0}^{infty}frac{frac12left[H_{n/2}-H_{(n-1)/2}right]+frac14left[H_{n+1/4}-H_{n-1/4}right]}{(2n+1)^2}$$ the latter sum should equal $pi^3/32$ which seems to work out numerically but honestly speaking I am lost from hereon. Using the well-known result $beta(3)=pi^3/32$ one could conjecture that the combination of harmonic sums has to come out equal to $(-1)^n/(2n+1)$ in order to complete the representation of $beta(3)$.
    $endgroup$
    – mrtaurho
    Dec 24 '18 at 1:48






  • 1




    $begingroup$
    I would say this solution here is quite impressive and convincing.
    $endgroup$
    – mrtaurho
    Dec 25 '18 at 15:38














  • 3




    $begingroup$
    I was able to break it down to an evaluation of harmonic sums $$I=frac{3pi^3}{32}-sum_{n=0}^{infty}frac{frac12left[H_{n/2}-H_{(n-1)/2}right]+frac14left[H_{n+1/4}-H_{n-1/4}right]}{(2n+1)^2}$$ the latter sum should equal $pi^3/32$ which seems to work out numerically but honestly speaking I am lost from hereon. Using the well-known result $beta(3)=pi^3/32$ one could conjecture that the combination of harmonic sums has to come out equal to $(-1)^n/(2n+1)$ in order to complete the representation of $beta(3)$.
    $endgroup$
    – mrtaurho
    Dec 24 '18 at 1:48






  • 1




    $begingroup$
    I would say this solution here is quite impressive and convincing.
    $endgroup$
    – mrtaurho
    Dec 25 '18 at 15:38








3




3




$begingroup$
I was able to break it down to an evaluation of harmonic sums $$I=frac{3pi^3}{32}-sum_{n=0}^{infty}frac{frac12left[H_{n/2}-H_{(n-1)/2}right]+frac14left[H_{n+1/4}-H_{n-1/4}right]}{(2n+1)^2}$$ the latter sum should equal $pi^3/32$ which seems to work out numerically but honestly speaking I am lost from hereon. Using the well-known result $beta(3)=pi^3/32$ one could conjecture that the combination of harmonic sums has to come out equal to $(-1)^n/(2n+1)$ in order to complete the representation of $beta(3)$.
$endgroup$
– mrtaurho
Dec 24 '18 at 1:48




$begingroup$
I was able to break it down to an evaluation of harmonic sums $$I=frac{3pi^3}{32}-sum_{n=0}^{infty}frac{frac12left[H_{n/2}-H_{(n-1)/2}right]+frac14left[H_{n+1/4}-H_{n-1/4}right]}{(2n+1)^2}$$ the latter sum should equal $pi^3/32$ which seems to work out numerically but honestly speaking I am lost from hereon. Using the well-known result $beta(3)=pi^3/32$ one could conjecture that the combination of harmonic sums has to come out equal to $(-1)^n/(2n+1)$ in order to complete the representation of $beta(3)$.
$endgroup$
– mrtaurho
Dec 24 '18 at 1:48




1




1




$begingroup$
I would say this solution here is quite impressive and convincing.
$endgroup$
– mrtaurho
Dec 25 '18 at 15:38




$begingroup$
I would say this solution here is quite impressive and convincing.
$endgroup$
– mrtaurho
Dec 25 '18 at 15:38










2 Answers
2






active

oldest

votes


















21












$begingroup$

Another approach,



Perform integration by parts,



begin{align*}
I&=int_0^1 frac{arctan x}{x}lnleft(frac{1+x^2}{(1-x)^2}right),dx\
&=Big[ln (x) lnleft(frac{1+x^2}{(1-x)^2}right)arctan xBig]_0^1 -int_0^1 frac{ln x}{1+x^2}lnleft(frac{1+x^2}{(1-x)^2}right)dx-int_0^1 frac{2(1+x)ln (x)arctan (x)}{(1-x)(1+x^2)}dx\
&=-int_0^1 frac{ln x}{1+x^2}lnleft(frac{1+x^2}{(1-x)^2}right)dx-2int_0^1 frac{(1+x)ln (x)arctan (x)}{(1-x)(1+x^2)}dx\
end{align*}



For $xin [0;1]$ define the function $R$ by,



begin{align*}
R(x)=int_0^x frac{(1+t)ln t}{(1-t)(1+t^2)}dt=int_0^1 frac{x(1+tx)ln (tx)}{(1-tx)(1+t^2x^2)}dt\
end{align*}



Observe that,



begin{align*}
R(1)=int_0^1 frac{tln t}{1+t}dt+int_0^1 frac{ln t}{1-t}dt
end{align*}

Perform integration by parts,



begin{align*}
I&=-int_0^1 frac{ln x}{1+x^2}lnleft(frac{1+x^2}{(1-x)^2}right)dx-2Big[R(x)arctan xBig]_0^1+2int_0^1frac{R(x)}{1+x^2}dx\
&=-int_0^1 frac{ln x}{1+x^2}lnleft(frac{1+x^2}{(1-x)^2}right)dx-frac{pi}{2}R(1)+2int_0^1 int_0^1 frac{x(1+tx)ln (tx)}{(1-tx)(1+t^2x^2)(1+x^2)}dtdx\
&=-int_0^1 frac{ln x}{1+x^2}lnleft(frac{1+x^2}{(1-x)^2}right)dx-frac{pi}{2}R(1)+int_0^1 ln xleft[frac{1}{1+x^2}lnleft(frac{1+t^2x^2}{(1-tx)^2}right)right]_{t=0}^{t=1} dx+\
&int_0^1 ln tleft[frac{1}{1+t^2}lnleft(frac{1+x^2}{(1-tx)^2}right)+frac{2arctan (tx)}{1-t^2}-frac{2tarctan x}{1+t^2}-frac{2tarctan x}{1-t^2}right]_{x=0}^{x=1} dt\
&=-frac{pi }{2}R(1)+ln 2int_0^1 frac{ln t}{1+t^2}dt-2int_0^1 frac{ln (1-t)ln t}{1+t^2}dt+2int_0^1 frac{ln tarctan t}{1-t^2}dt-\
&frac{pi}{2} int_0^1 frac{tln t}{1+t^2}dt-frac{pi}{2} int_0^1frac{tln t}{1-t^2} dt\
end{align*}



For $xin [0;1]$ define the function $S$ by,



begin{align*}
S(x)=int_0^x frac{ln t}{1-t^2}dt=int_0^1 frac{xln(tx)}{1-t^2x^2} dt
end{align*}



Perform integration by parts,



begin{align*}
int_0^1 frac{ln xarctan x}{1-x^2}dx&=Big[S(x)arctan xBig]_0^1-int_0^1 frac{S(x)}{1+x^2}dx\
&=frac{pi}{4}S(1)-int_0^1 int_0^1 frac{xln(tx)} {(1-t^2x^2)(1+x^2)} dtdx\
&=frac{pi}{4}S(1)-frac{1}{2}int_0^1 left[ frac{ln x}{1+x^2}lnleft(frac{1+tx}{1-tx} right)right]_{t=0}^{t=1} dx-\
&frac{1}{2}int_0^1 left[ frac{ln t}{1+t^2}lnleft(frac{1+x^2}{1-t^2x^2} right)right]_{x=0}^{x=1}dt\
&=frac{pi}{4}S(1)-frac{ln 2}{2}int_0^1 frac{ln t}{1+t^2}dt+int_0^1 frac{ln(1-x)ln x}{1+x^2}dx
end{align*}



Therefore,



begin{align*}I&=piint_0^1frac{2tln t}{t^4-1} dtend{align*}



Perform the change of variable $y=t^2$,



begin{align*}I&=frac{1}{2}pi int_0^1 frac{ln y}{y^2-1}dy\
&=frac{1}{2}pitimes frac{3}{4}zeta(2)\
&=frac{pi^3}{16}
end{align*}






share|cite|improve this answer











$endgroup$









  • 1




    $begingroup$
    That's impressive, thank you! I've seen you use this approach alot and it's quite useful, let me a few time to understand it's working better.
    $endgroup$
    – Zacky
    Dec 25 '18 at 17:59










  • $begingroup$
    Well done. (+1)
    $endgroup$
    – Mark Viola
    Dec 26 '18 at 4:26










  • $begingroup$
    Very nice solution and $to +1$
    $endgroup$
    – Claude Leibovici
    Dec 26 '18 at 6:07






  • 1




    $begingroup$
    I compute $int_0^1 F(t,x)ln t,dx$ and $int_0^1 F(t,x)ln x,dt$ and one can compute an antiderivative $U(t,x)$ of $F(t,x)$ wrt $x$, and on the other hand an antiderivative $V(t,x)$ of $F(t,x)$ wrt $t$.
    $endgroup$
    – FDP
    Dec 26 '18 at 17:07








  • 1




    $begingroup$
    @Zacky: remember in the double integrals you can choose to integrate wrt $x$ or wrt $t$. If there is a factor $ln x$ you don't want to integrate wrt $x$ first. If there is a factor $ln t$ you don't want to integrate wrt $t$ first. And, $ln(tx)=ln x +ln t$
    $endgroup$
    – FDP
    Dec 26 '18 at 17:25





















4












$begingroup$

Put
begin{equation*}
I=int_{0}^1dfrac{arctan x}{x}lnleft(dfrac{1+x^2}{(1-x)^2}right), mathrm{d}x.
end{equation*}

Via the substitution $ x=dfrac{z}{z+1}$ we get
begin{equation*}
I = int_{0}^{infty}dfrac{arctan frac{z}{z+1}ln(2z^2+2z+1)}{z^2+z}, mathrm{d}z.
end{equation*}

Put
begin{equation*}
log z=ln|z|+iarg z, quad -pi<arg z <pi.
end{equation*}

Then
begin{equation*}
arctan frac{z}{z+1}ln(2z^2+2z+1) = text{Im}left(log^2(1+z+iz)right).
end{equation*}

Consequently
begin{equation*}
I = text{Im}left(int_{0}^{infty}dfrac{log^2(1+z+iz)}{z^2+z}right)mathrm{d}z.
end{equation*}

However, $ log(z) $ is an analytic function in $ text{Re} z>0 $. According to Cauchys integral theorem we get the same value if we integrate along the curve with the parametrization $ z=(1-i)s, s>0 $.
begin{gather*}
I = text{Im}left(int_{0}^{infty}dfrac{ln^2(2s+1)}{s(s+1-is)}, mathrm{d}sright) = int_{0}^{infty}dfrac{ln^2(2s+1)}{2s^2+2s+1}, mathrm{d}s = \[2ex] int_{0}^{infty}dfrac{2ln^2(2s+1)}{(2s+1)^2+1}, mathrm{d}s = [t=2s+1] = \[2ex] int_{1}^{infty}dfrac{ln^2(t)}{t^2+1}, mathrm{d}t =[u= 1/t] = int_{0}^{1}dfrac{ln^2(u)}{u^2+1}, mathrm{d}u.
end{gather*}

Thus
begin{equation*}
2I = int_{0}^{infty}dfrac{ln^2(u)}{u^2+1}, mathrm{d}u
end{equation*}

In order to evaluate this integral we integrate $ dfrac{log^3(z)}{z^2+1} $ along a keyhole contour and use residue calculus.
In this case $ log z =ln |z|+iarg z, quad 0<arg z < 2pi $.
We get
begin{equation*}
I = dfrac{pi^3}{16}.
end{equation*}






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3050696%2fproving-that-int-01-frac-arctan-xx-ln-left-frac1x21-x2-rightd%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    21












    $begingroup$

    Another approach,



    Perform integration by parts,



    begin{align*}
    I&=int_0^1 frac{arctan x}{x}lnleft(frac{1+x^2}{(1-x)^2}right),dx\
    &=Big[ln (x) lnleft(frac{1+x^2}{(1-x)^2}right)arctan xBig]_0^1 -int_0^1 frac{ln x}{1+x^2}lnleft(frac{1+x^2}{(1-x)^2}right)dx-int_0^1 frac{2(1+x)ln (x)arctan (x)}{(1-x)(1+x^2)}dx\
    &=-int_0^1 frac{ln x}{1+x^2}lnleft(frac{1+x^2}{(1-x)^2}right)dx-2int_0^1 frac{(1+x)ln (x)arctan (x)}{(1-x)(1+x^2)}dx\
    end{align*}



    For $xin [0;1]$ define the function $R$ by,



    begin{align*}
    R(x)=int_0^x frac{(1+t)ln t}{(1-t)(1+t^2)}dt=int_0^1 frac{x(1+tx)ln (tx)}{(1-tx)(1+t^2x^2)}dt\
    end{align*}



    Observe that,



    begin{align*}
    R(1)=int_0^1 frac{tln t}{1+t}dt+int_0^1 frac{ln t}{1-t}dt
    end{align*}

    Perform integration by parts,



    begin{align*}
    I&=-int_0^1 frac{ln x}{1+x^2}lnleft(frac{1+x^2}{(1-x)^2}right)dx-2Big[R(x)arctan xBig]_0^1+2int_0^1frac{R(x)}{1+x^2}dx\
    &=-int_0^1 frac{ln x}{1+x^2}lnleft(frac{1+x^2}{(1-x)^2}right)dx-frac{pi}{2}R(1)+2int_0^1 int_0^1 frac{x(1+tx)ln (tx)}{(1-tx)(1+t^2x^2)(1+x^2)}dtdx\
    &=-int_0^1 frac{ln x}{1+x^2}lnleft(frac{1+x^2}{(1-x)^2}right)dx-frac{pi}{2}R(1)+int_0^1 ln xleft[frac{1}{1+x^2}lnleft(frac{1+t^2x^2}{(1-tx)^2}right)right]_{t=0}^{t=1} dx+\
    &int_0^1 ln tleft[frac{1}{1+t^2}lnleft(frac{1+x^2}{(1-tx)^2}right)+frac{2arctan (tx)}{1-t^2}-frac{2tarctan x}{1+t^2}-frac{2tarctan x}{1-t^2}right]_{x=0}^{x=1} dt\
    &=-frac{pi }{2}R(1)+ln 2int_0^1 frac{ln t}{1+t^2}dt-2int_0^1 frac{ln (1-t)ln t}{1+t^2}dt+2int_0^1 frac{ln tarctan t}{1-t^2}dt-\
    &frac{pi}{2} int_0^1 frac{tln t}{1+t^2}dt-frac{pi}{2} int_0^1frac{tln t}{1-t^2} dt\
    end{align*}



    For $xin [0;1]$ define the function $S$ by,



    begin{align*}
    S(x)=int_0^x frac{ln t}{1-t^2}dt=int_0^1 frac{xln(tx)}{1-t^2x^2} dt
    end{align*}



    Perform integration by parts,



    begin{align*}
    int_0^1 frac{ln xarctan x}{1-x^2}dx&=Big[S(x)arctan xBig]_0^1-int_0^1 frac{S(x)}{1+x^2}dx\
    &=frac{pi}{4}S(1)-int_0^1 int_0^1 frac{xln(tx)} {(1-t^2x^2)(1+x^2)} dtdx\
    &=frac{pi}{4}S(1)-frac{1}{2}int_0^1 left[ frac{ln x}{1+x^2}lnleft(frac{1+tx}{1-tx} right)right]_{t=0}^{t=1} dx-\
    &frac{1}{2}int_0^1 left[ frac{ln t}{1+t^2}lnleft(frac{1+x^2}{1-t^2x^2} right)right]_{x=0}^{x=1}dt\
    &=frac{pi}{4}S(1)-frac{ln 2}{2}int_0^1 frac{ln t}{1+t^2}dt+int_0^1 frac{ln(1-x)ln x}{1+x^2}dx
    end{align*}



    Therefore,



    begin{align*}I&=piint_0^1frac{2tln t}{t^4-1} dtend{align*}



    Perform the change of variable $y=t^2$,



    begin{align*}I&=frac{1}{2}pi int_0^1 frac{ln y}{y^2-1}dy\
    &=frac{1}{2}pitimes frac{3}{4}zeta(2)\
    &=frac{pi^3}{16}
    end{align*}






    share|cite|improve this answer











    $endgroup$









    • 1




      $begingroup$
      That's impressive, thank you! I've seen you use this approach alot and it's quite useful, let me a few time to understand it's working better.
      $endgroup$
      – Zacky
      Dec 25 '18 at 17:59










    • $begingroup$
      Well done. (+1)
      $endgroup$
      – Mark Viola
      Dec 26 '18 at 4:26










    • $begingroup$
      Very nice solution and $to +1$
      $endgroup$
      – Claude Leibovici
      Dec 26 '18 at 6:07






    • 1




      $begingroup$
      I compute $int_0^1 F(t,x)ln t,dx$ and $int_0^1 F(t,x)ln x,dt$ and one can compute an antiderivative $U(t,x)$ of $F(t,x)$ wrt $x$, and on the other hand an antiderivative $V(t,x)$ of $F(t,x)$ wrt $t$.
      $endgroup$
      – FDP
      Dec 26 '18 at 17:07








    • 1




      $begingroup$
      @Zacky: remember in the double integrals you can choose to integrate wrt $x$ or wrt $t$. If there is a factor $ln x$ you don't want to integrate wrt $x$ first. If there is a factor $ln t$ you don't want to integrate wrt $t$ first. And, $ln(tx)=ln x +ln t$
      $endgroup$
      – FDP
      Dec 26 '18 at 17:25


















    21












    $begingroup$

    Another approach,



    Perform integration by parts,



    begin{align*}
    I&=int_0^1 frac{arctan x}{x}lnleft(frac{1+x^2}{(1-x)^2}right),dx\
    &=Big[ln (x) lnleft(frac{1+x^2}{(1-x)^2}right)arctan xBig]_0^1 -int_0^1 frac{ln x}{1+x^2}lnleft(frac{1+x^2}{(1-x)^2}right)dx-int_0^1 frac{2(1+x)ln (x)arctan (x)}{(1-x)(1+x^2)}dx\
    &=-int_0^1 frac{ln x}{1+x^2}lnleft(frac{1+x^2}{(1-x)^2}right)dx-2int_0^1 frac{(1+x)ln (x)arctan (x)}{(1-x)(1+x^2)}dx\
    end{align*}



    For $xin [0;1]$ define the function $R$ by,



    begin{align*}
    R(x)=int_0^x frac{(1+t)ln t}{(1-t)(1+t^2)}dt=int_0^1 frac{x(1+tx)ln (tx)}{(1-tx)(1+t^2x^2)}dt\
    end{align*}



    Observe that,



    begin{align*}
    R(1)=int_0^1 frac{tln t}{1+t}dt+int_0^1 frac{ln t}{1-t}dt
    end{align*}

    Perform integration by parts,



    begin{align*}
    I&=-int_0^1 frac{ln x}{1+x^2}lnleft(frac{1+x^2}{(1-x)^2}right)dx-2Big[R(x)arctan xBig]_0^1+2int_0^1frac{R(x)}{1+x^2}dx\
    &=-int_0^1 frac{ln x}{1+x^2}lnleft(frac{1+x^2}{(1-x)^2}right)dx-frac{pi}{2}R(1)+2int_0^1 int_0^1 frac{x(1+tx)ln (tx)}{(1-tx)(1+t^2x^2)(1+x^2)}dtdx\
    &=-int_0^1 frac{ln x}{1+x^2}lnleft(frac{1+x^2}{(1-x)^2}right)dx-frac{pi}{2}R(1)+int_0^1 ln xleft[frac{1}{1+x^2}lnleft(frac{1+t^2x^2}{(1-tx)^2}right)right]_{t=0}^{t=1} dx+\
    &int_0^1 ln tleft[frac{1}{1+t^2}lnleft(frac{1+x^2}{(1-tx)^2}right)+frac{2arctan (tx)}{1-t^2}-frac{2tarctan x}{1+t^2}-frac{2tarctan x}{1-t^2}right]_{x=0}^{x=1} dt\
    &=-frac{pi }{2}R(1)+ln 2int_0^1 frac{ln t}{1+t^2}dt-2int_0^1 frac{ln (1-t)ln t}{1+t^2}dt+2int_0^1 frac{ln tarctan t}{1-t^2}dt-\
    &frac{pi}{2} int_0^1 frac{tln t}{1+t^2}dt-frac{pi}{2} int_0^1frac{tln t}{1-t^2} dt\
    end{align*}



    For $xin [0;1]$ define the function $S$ by,



    begin{align*}
    S(x)=int_0^x frac{ln t}{1-t^2}dt=int_0^1 frac{xln(tx)}{1-t^2x^2} dt
    end{align*}



    Perform integration by parts,



    begin{align*}
    int_0^1 frac{ln xarctan x}{1-x^2}dx&=Big[S(x)arctan xBig]_0^1-int_0^1 frac{S(x)}{1+x^2}dx\
    &=frac{pi}{4}S(1)-int_0^1 int_0^1 frac{xln(tx)} {(1-t^2x^2)(1+x^2)} dtdx\
    &=frac{pi}{4}S(1)-frac{1}{2}int_0^1 left[ frac{ln x}{1+x^2}lnleft(frac{1+tx}{1-tx} right)right]_{t=0}^{t=1} dx-\
    &frac{1}{2}int_0^1 left[ frac{ln t}{1+t^2}lnleft(frac{1+x^2}{1-t^2x^2} right)right]_{x=0}^{x=1}dt\
    &=frac{pi}{4}S(1)-frac{ln 2}{2}int_0^1 frac{ln t}{1+t^2}dt+int_0^1 frac{ln(1-x)ln x}{1+x^2}dx
    end{align*}



    Therefore,



    begin{align*}I&=piint_0^1frac{2tln t}{t^4-1} dtend{align*}



    Perform the change of variable $y=t^2$,



    begin{align*}I&=frac{1}{2}pi int_0^1 frac{ln y}{y^2-1}dy\
    &=frac{1}{2}pitimes frac{3}{4}zeta(2)\
    &=frac{pi^3}{16}
    end{align*}






    share|cite|improve this answer











    $endgroup$









    • 1




      $begingroup$
      That's impressive, thank you! I've seen you use this approach alot and it's quite useful, let me a few time to understand it's working better.
      $endgroup$
      – Zacky
      Dec 25 '18 at 17:59










    • $begingroup$
      Well done. (+1)
      $endgroup$
      – Mark Viola
      Dec 26 '18 at 4:26










    • $begingroup$
      Very nice solution and $to +1$
      $endgroup$
      – Claude Leibovici
      Dec 26 '18 at 6:07






    • 1




      $begingroup$
      I compute $int_0^1 F(t,x)ln t,dx$ and $int_0^1 F(t,x)ln x,dt$ and one can compute an antiderivative $U(t,x)$ of $F(t,x)$ wrt $x$, and on the other hand an antiderivative $V(t,x)$ of $F(t,x)$ wrt $t$.
      $endgroup$
      – FDP
      Dec 26 '18 at 17:07








    • 1




      $begingroup$
      @Zacky: remember in the double integrals you can choose to integrate wrt $x$ or wrt $t$. If there is a factor $ln x$ you don't want to integrate wrt $x$ first. If there is a factor $ln t$ you don't want to integrate wrt $t$ first. And, $ln(tx)=ln x +ln t$
      $endgroup$
      – FDP
      Dec 26 '18 at 17:25
















    21












    21








    21





    $begingroup$

    Another approach,



    Perform integration by parts,



    begin{align*}
    I&=int_0^1 frac{arctan x}{x}lnleft(frac{1+x^2}{(1-x)^2}right),dx\
    &=Big[ln (x) lnleft(frac{1+x^2}{(1-x)^2}right)arctan xBig]_0^1 -int_0^1 frac{ln x}{1+x^2}lnleft(frac{1+x^2}{(1-x)^2}right)dx-int_0^1 frac{2(1+x)ln (x)arctan (x)}{(1-x)(1+x^2)}dx\
    &=-int_0^1 frac{ln x}{1+x^2}lnleft(frac{1+x^2}{(1-x)^2}right)dx-2int_0^1 frac{(1+x)ln (x)arctan (x)}{(1-x)(1+x^2)}dx\
    end{align*}



    For $xin [0;1]$ define the function $R$ by,



    begin{align*}
    R(x)=int_0^x frac{(1+t)ln t}{(1-t)(1+t^2)}dt=int_0^1 frac{x(1+tx)ln (tx)}{(1-tx)(1+t^2x^2)}dt\
    end{align*}



    Observe that,



    begin{align*}
    R(1)=int_0^1 frac{tln t}{1+t}dt+int_0^1 frac{ln t}{1-t}dt
    end{align*}

    Perform integration by parts,



    begin{align*}
    I&=-int_0^1 frac{ln x}{1+x^2}lnleft(frac{1+x^2}{(1-x)^2}right)dx-2Big[R(x)arctan xBig]_0^1+2int_0^1frac{R(x)}{1+x^2}dx\
    &=-int_0^1 frac{ln x}{1+x^2}lnleft(frac{1+x^2}{(1-x)^2}right)dx-frac{pi}{2}R(1)+2int_0^1 int_0^1 frac{x(1+tx)ln (tx)}{(1-tx)(1+t^2x^2)(1+x^2)}dtdx\
    &=-int_0^1 frac{ln x}{1+x^2}lnleft(frac{1+x^2}{(1-x)^2}right)dx-frac{pi}{2}R(1)+int_0^1 ln xleft[frac{1}{1+x^2}lnleft(frac{1+t^2x^2}{(1-tx)^2}right)right]_{t=0}^{t=1} dx+\
    &int_0^1 ln tleft[frac{1}{1+t^2}lnleft(frac{1+x^2}{(1-tx)^2}right)+frac{2arctan (tx)}{1-t^2}-frac{2tarctan x}{1+t^2}-frac{2tarctan x}{1-t^2}right]_{x=0}^{x=1} dt\
    &=-frac{pi }{2}R(1)+ln 2int_0^1 frac{ln t}{1+t^2}dt-2int_0^1 frac{ln (1-t)ln t}{1+t^2}dt+2int_0^1 frac{ln tarctan t}{1-t^2}dt-\
    &frac{pi}{2} int_0^1 frac{tln t}{1+t^2}dt-frac{pi}{2} int_0^1frac{tln t}{1-t^2} dt\
    end{align*}



    For $xin [0;1]$ define the function $S$ by,



    begin{align*}
    S(x)=int_0^x frac{ln t}{1-t^2}dt=int_0^1 frac{xln(tx)}{1-t^2x^2} dt
    end{align*}



    Perform integration by parts,



    begin{align*}
    int_0^1 frac{ln xarctan x}{1-x^2}dx&=Big[S(x)arctan xBig]_0^1-int_0^1 frac{S(x)}{1+x^2}dx\
    &=frac{pi}{4}S(1)-int_0^1 int_0^1 frac{xln(tx)} {(1-t^2x^2)(1+x^2)} dtdx\
    &=frac{pi}{4}S(1)-frac{1}{2}int_0^1 left[ frac{ln x}{1+x^2}lnleft(frac{1+tx}{1-tx} right)right]_{t=0}^{t=1} dx-\
    &frac{1}{2}int_0^1 left[ frac{ln t}{1+t^2}lnleft(frac{1+x^2}{1-t^2x^2} right)right]_{x=0}^{x=1}dt\
    &=frac{pi}{4}S(1)-frac{ln 2}{2}int_0^1 frac{ln t}{1+t^2}dt+int_0^1 frac{ln(1-x)ln x}{1+x^2}dx
    end{align*}



    Therefore,



    begin{align*}I&=piint_0^1frac{2tln t}{t^4-1} dtend{align*}



    Perform the change of variable $y=t^2$,



    begin{align*}I&=frac{1}{2}pi int_0^1 frac{ln y}{y^2-1}dy\
    &=frac{1}{2}pitimes frac{3}{4}zeta(2)\
    &=frac{pi^3}{16}
    end{align*}






    share|cite|improve this answer











    $endgroup$



    Another approach,



    Perform integration by parts,



    begin{align*}
    I&=int_0^1 frac{arctan x}{x}lnleft(frac{1+x^2}{(1-x)^2}right),dx\
    &=Big[ln (x) lnleft(frac{1+x^2}{(1-x)^2}right)arctan xBig]_0^1 -int_0^1 frac{ln x}{1+x^2}lnleft(frac{1+x^2}{(1-x)^2}right)dx-int_0^1 frac{2(1+x)ln (x)arctan (x)}{(1-x)(1+x^2)}dx\
    &=-int_0^1 frac{ln x}{1+x^2}lnleft(frac{1+x^2}{(1-x)^2}right)dx-2int_0^1 frac{(1+x)ln (x)arctan (x)}{(1-x)(1+x^2)}dx\
    end{align*}



    For $xin [0;1]$ define the function $R$ by,



    begin{align*}
    R(x)=int_0^x frac{(1+t)ln t}{(1-t)(1+t^2)}dt=int_0^1 frac{x(1+tx)ln (tx)}{(1-tx)(1+t^2x^2)}dt\
    end{align*}



    Observe that,



    begin{align*}
    R(1)=int_0^1 frac{tln t}{1+t}dt+int_0^1 frac{ln t}{1-t}dt
    end{align*}

    Perform integration by parts,



    begin{align*}
    I&=-int_0^1 frac{ln x}{1+x^2}lnleft(frac{1+x^2}{(1-x)^2}right)dx-2Big[R(x)arctan xBig]_0^1+2int_0^1frac{R(x)}{1+x^2}dx\
    &=-int_0^1 frac{ln x}{1+x^2}lnleft(frac{1+x^2}{(1-x)^2}right)dx-frac{pi}{2}R(1)+2int_0^1 int_0^1 frac{x(1+tx)ln (tx)}{(1-tx)(1+t^2x^2)(1+x^2)}dtdx\
    &=-int_0^1 frac{ln x}{1+x^2}lnleft(frac{1+x^2}{(1-x)^2}right)dx-frac{pi}{2}R(1)+int_0^1 ln xleft[frac{1}{1+x^2}lnleft(frac{1+t^2x^2}{(1-tx)^2}right)right]_{t=0}^{t=1} dx+\
    &int_0^1 ln tleft[frac{1}{1+t^2}lnleft(frac{1+x^2}{(1-tx)^2}right)+frac{2arctan (tx)}{1-t^2}-frac{2tarctan x}{1+t^2}-frac{2tarctan x}{1-t^2}right]_{x=0}^{x=1} dt\
    &=-frac{pi }{2}R(1)+ln 2int_0^1 frac{ln t}{1+t^2}dt-2int_0^1 frac{ln (1-t)ln t}{1+t^2}dt+2int_0^1 frac{ln tarctan t}{1-t^2}dt-\
    &frac{pi}{2} int_0^1 frac{tln t}{1+t^2}dt-frac{pi}{2} int_0^1frac{tln t}{1-t^2} dt\
    end{align*}



    For $xin [0;1]$ define the function $S$ by,



    begin{align*}
    S(x)=int_0^x frac{ln t}{1-t^2}dt=int_0^1 frac{xln(tx)}{1-t^2x^2} dt
    end{align*}



    Perform integration by parts,



    begin{align*}
    int_0^1 frac{ln xarctan x}{1-x^2}dx&=Big[S(x)arctan xBig]_0^1-int_0^1 frac{S(x)}{1+x^2}dx\
    &=frac{pi}{4}S(1)-int_0^1 int_0^1 frac{xln(tx)} {(1-t^2x^2)(1+x^2)} dtdx\
    &=frac{pi}{4}S(1)-frac{1}{2}int_0^1 left[ frac{ln x}{1+x^2}lnleft(frac{1+tx}{1-tx} right)right]_{t=0}^{t=1} dx-\
    &frac{1}{2}int_0^1 left[ frac{ln t}{1+t^2}lnleft(frac{1+x^2}{1-t^2x^2} right)right]_{x=0}^{x=1}dt\
    &=frac{pi}{4}S(1)-frac{ln 2}{2}int_0^1 frac{ln t}{1+t^2}dt+int_0^1 frac{ln(1-x)ln x}{1+x^2}dx
    end{align*}



    Therefore,



    begin{align*}I&=piint_0^1frac{2tln t}{t^4-1} dtend{align*}



    Perform the change of variable $y=t^2$,



    begin{align*}I&=frac{1}{2}pi int_0^1 frac{ln y}{y^2-1}dy\
    &=frac{1}{2}pitimes frac{3}{4}zeta(2)\
    &=frac{pi^3}{16}
    end{align*}







    share|cite|improve this answer














    share|cite|improve this answer



    share|cite|improve this answer








    edited Dec 26 '18 at 17:22

























    answered Dec 25 '18 at 17:07









    FDPFDP

    5,47211525




    5,47211525








    • 1




      $begingroup$
      That's impressive, thank you! I've seen you use this approach alot and it's quite useful, let me a few time to understand it's working better.
      $endgroup$
      – Zacky
      Dec 25 '18 at 17:59










    • $begingroup$
      Well done. (+1)
      $endgroup$
      – Mark Viola
      Dec 26 '18 at 4:26










    • $begingroup$
      Very nice solution and $to +1$
      $endgroup$
      – Claude Leibovici
      Dec 26 '18 at 6:07






    • 1




      $begingroup$
      I compute $int_0^1 F(t,x)ln t,dx$ and $int_0^1 F(t,x)ln x,dt$ and one can compute an antiderivative $U(t,x)$ of $F(t,x)$ wrt $x$, and on the other hand an antiderivative $V(t,x)$ of $F(t,x)$ wrt $t$.
      $endgroup$
      – FDP
      Dec 26 '18 at 17:07








    • 1




      $begingroup$
      @Zacky: remember in the double integrals you can choose to integrate wrt $x$ or wrt $t$. If there is a factor $ln x$ you don't want to integrate wrt $x$ first. If there is a factor $ln t$ you don't want to integrate wrt $t$ first. And, $ln(tx)=ln x +ln t$
      $endgroup$
      – FDP
      Dec 26 '18 at 17:25
















    • 1




      $begingroup$
      That's impressive, thank you! I've seen you use this approach alot and it's quite useful, let me a few time to understand it's working better.
      $endgroup$
      – Zacky
      Dec 25 '18 at 17:59










    • $begingroup$
      Well done. (+1)
      $endgroup$
      – Mark Viola
      Dec 26 '18 at 4:26










    • $begingroup$
      Very nice solution and $to +1$
      $endgroup$
      – Claude Leibovici
      Dec 26 '18 at 6:07






    • 1




      $begingroup$
      I compute $int_0^1 F(t,x)ln t,dx$ and $int_0^1 F(t,x)ln x,dt$ and one can compute an antiderivative $U(t,x)$ of $F(t,x)$ wrt $x$, and on the other hand an antiderivative $V(t,x)$ of $F(t,x)$ wrt $t$.
      $endgroup$
      – FDP
      Dec 26 '18 at 17:07








    • 1




      $begingroup$
      @Zacky: remember in the double integrals you can choose to integrate wrt $x$ or wrt $t$. If there is a factor $ln x$ you don't want to integrate wrt $x$ first. If there is a factor $ln t$ you don't want to integrate wrt $t$ first. And, $ln(tx)=ln x +ln t$
      $endgroup$
      – FDP
      Dec 26 '18 at 17:25










    1




    1




    $begingroup$
    That's impressive, thank you! I've seen you use this approach alot and it's quite useful, let me a few time to understand it's working better.
    $endgroup$
    – Zacky
    Dec 25 '18 at 17:59




    $begingroup$
    That's impressive, thank you! I've seen you use this approach alot and it's quite useful, let me a few time to understand it's working better.
    $endgroup$
    – Zacky
    Dec 25 '18 at 17:59












    $begingroup$
    Well done. (+1)
    $endgroup$
    – Mark Viola
    Dec 26 '18 at 4:26




    $begingroup$
    Well done. (+1)
    $endgroup$
    – Mark Viola
    Dec 26 '18 at 4:26












    $begingroup$
    Very nice solution and $to +1$
    $endgroup$
    – Claude Leibovici
    Dec 26 '18 at 6:07




    $begingroup$
    Very nice solution and $to +1$
    $endgroup$
    – Claude Leibovici
    Dec 26 '18 at 6:07




    1




    1




    $begingroup$
    I compute $int_0^1 F(t,x)ln t,dx$ and $int_0^1 F(t,x)ln x,dt$ and one can compute an antiderivative $U(t,x)$ of $F(t,x)$ wrt $x$, and on the other hand an antiderivative $V(t,x)$ of $F(t,x)$ wrt $t$.
    $endgroup$
    – FDP
    Dec 26 '18 at 17:07






    $begingroup$
    I compute $int_0^1 F(t,x)ln t,dx$ and $int_0^1 F(t,x)ln x,dt$ and one can compute an antiderivative $U(t,x)$ of $F(t,x)$ wrt $x$, and on the other hand an antiderivative $V(t,x)$ of $F(t,x)$ wrt $t$.
    $endgroup$
    – FDP
    Dec 26 '18 at 17:07






    1




    1




    $begingroup$
    @Zacky: remember in the double integrals you can choose to integrate wrt $x$ or wrt $t$. If there is a factor $ln x$ you don't want to integrate wrt $x$ first. If there is a factor $ln t$ you don't want to integrate wrt $t$ first. And, $ln(tx)=ln x +ln t$
    $endgroup$
    – FDP
    Dec 26 '18 at 17:25






    $begingroup$
    @Zacky: remember in the double integrals you can choose to integrate wrt $x$ or wrt $t$. If there is a factor $ln x$ you don't want to integrate wrt $x$ first. If there is a factor $ln t$ you don't want to integrate wrt $t$ first. And, $ln(tx)=ln x +ln t$
    $endgroup$
    – FDP
    Dec 26 '18 at 17:25













    4












    $begingroup$

    Put
    begin{equation*}
    I=int_{0}^1dfrac{arctan x}{x}lnleft(dfrac{1+x^2}{(1-x)^2}right), mathrm{d}x.
    end{equation*}

    Via the substitution $ x=dfrac{z}{z+1}$ we get
    begin{equation*}
    I = int_{0}^{infty}dfrac{arctan frac{z}{z+1}ln(2z^2+2z+1)}{z^2+z}, mathrm{d}z.
    end{equation*}

    Put
    begin{equation*}
    log z=ln|z|+iarg z, quad -pi<arg z <pi.
    end{equation*}

    Then
    begin{equation*}
    arctan frac{z}{z+1}ln(2z^2+2z+1) = text{Im}left(log^2(1+z+iz)right).
    end{equation*}

    Consequently
    begin{equation*}
    I = text{Im}left(int_{0}^{infty}dfrac{log^2(1+z+iz)}{z^2+z}right)mathrm{d}z.
    end{equation*}

    However, $ log(z) $ is an analytic function in $ text{Re} z>0 $. According to Cauchys integral theorem we get the same value if we integrate along the curve with the parametrization $ z=(1-i)s, s>0 $.
    begin{gather*}
    I = text{Im}left(int_{0}^{infty}dfrac{ln^2(2s+1)}{s(s+1-is)}, mathrm{d}sright) = int_{0}^{infty}dfrac{ln^2(2s+1)}{2s^2+2s+1}, mathrm{d}s = \[2ex] int_{0}^{infty}dfrac{2ln^2(2s+1)}{(2s+1)^2+1}, mathrm{d}s = [t=2s+1] = \[2ex] int_{1}^{infty}dfrac{ln^2(t)}{t^2+1}, mathrm{d}t =[u= 1/t] = int_{0}^{1}dfrac{ln^2(u)}{u^2+1}, mathrm{d}u.
    end{gather*}

    Thus
    begin{equation*}
    2I = int_{0}^{infty}dfrac{ln^2(u)}{u^2+1}, mathrm{d}u
    end{equation*}

    In order to evaluate this integral we integrate $ dfrac{log^3(z)}{z^2+1} $ along a keyhole contour and use residue calculus.
    In this case $ log z =ln |z|+iarg z, quad 0<arg z < 2pi $.
    We get
    begin{equation*}
    I = dfrac{pi^3}{16}.
    end{equation*}






    share|cite|improve this answer









    $endgroup$


















      4












      $begingroup$

      Put
      begin{equation*}
      I=int_{0}^1dfrac{arctan x}{x}lnleft(dfrac{1+x^2}{(1-x)^2}right), mathrm{d}x.
      end{equation*}

      Via the substitution $ x=dfrac{z}{z+1}$ we get
      begin{equation*}
      I = int_{0}^{infty}dfrac{arctan frac{z}{z+1}ln(2z^2+2z+1)}{z^2+z}, mathrm{d}z.
      end{equation*}

      Put
      begin{equation*}
      log z=ln|z|+iarg z, quad -pi<arg z <pi.
      end{equation*}

      Then
      begin{equation*}
      arctan frac{z}{z+1}ln(2z^2+2z+1) = text{Im}left(log^2(1+z+iz)right).
      end{equation*}

      Consequently
      begin{equation*}
      I = text{Im}left(int_{0}^{infty}dfrac{log^2(1+z+iz)}{z^2+z}right)mathrm{d}z.
      end{equation*}

      However, $ log(z) $ is an analytic function in $ text{Re} z>0 $. According to Cauchys integral theorem we get the same value if we integrate along the curve with the parametrization $ z=(1-i)s, s>0 $.
      begin{gather*}
      I = text{Im}left(int_{0}^{infty}dfrac{ln^2(2s+1)}{s(s+1-is)}, mathrm{d}sright) = int_{0}^{infty}dfrac{ln^2(2s+1)}{2s^2+2s+1}, mathrm{d}s = \[2ex] int_{0}^{infty}dfrac{2ln^2(2s+1)}{(2s+1)^2+1}, mathrm{d}s = [t=2s+1] = \[2ex] int_{1}^{infty}dfrac{ln^2(t)}{t^2+1}, mathrm{d}t =[u= 1/t] = int_{0}^{1}dfrac{ln^2(u)}{u^2+1}, mathrm{d}u.
      end{gather*}

      Thus
      begin{equation*}
      2I = int_{0}^{infty}dfrac{ln^2(u)}{u^2+1}, mathrm{d}u
      end{equation*}

      In order to evaluate this integral we integrate $ dfrac{log^3(z)}{z^2+1} $ along a keyhole contour and use residue calculus.
      In this case $ log z =ln |z|+iarg z, quad 0<arg z < 2pi $.
      We get
      begin{equation*}
      I = dfrac{pi^3}{16}.
      end{equation*}






      share|cite|improve this answer









      $endgroup$
















        4












        4








        4





        $begingroup$

        Put
        begin{equation*}
        I=int_{0}^1dfrac{arctan x}{x}lnleft(dfrac{1+x^2}{(1-x)^2}right), mathrm{d}x.
        end{equation*}

        Via the substitution $ x=dfrac{z}{z+1}$ we get
        begin{equation*}
        I = int_{0}^{infty}dfrac{arctan frac{z}{z+1}ln(2z^2+2z+1)}{z^2+z}, mathrm{d}z.
        end{equation*}

        Put
        begin{equation*}
        log z=ln|z|+iarg z, quad -pi<arg z <pi.
        end{equation*}

        Then
        begin{equation*}
        arctan frac{z}{z+1}ln(2z^2+2z+1) = text{Im}left(log^2(1+z+iz)right).
        end{equation*}

        Consequently
        begin{equation*}
        I = text{Im}left(int_{0}^{infty}dfrac{log^2(1+z+iz)}{z^2+z}right)mathrm{d}z.
        end{equation*}

        However, $ log(z) $ is an analytic function in $ text{Re} z>0 $. According to Cauchys integral theorem we get the same value if we integrate along the curve with the parametrization $ z=(1-i)s, s>0 $.
        begin{gather*}
        I = text{Im}left(int_{0}^{infty}dfrac{ln^2(2s+1)}{s(s+1-is)}, mathrm{d}sright) = int_{0}^{infty}dfrac{ln^2(2s+1)}{2s^2+2s+1}, mathrm{d}s = \[2ex] int_{0}^{infty}dfrac{2ln^2(2s+1)}{(2s+1)^2+1}, mathrm{d}s = [t=2s+1] = \[2ex] int_{1}^{infty}dfrac{ln^2(t)}{t^2+1}, mathrm{d}t =[u= 1/t] = int_{0}^{1}dfrac{ln^2(u)}{u^2+1}, mathrm{d}u.
        end{gather*}

        Thus
        begin{equation*}
        2I = int_{0}^{infty}dfrac{ln^2(u)}{u^2+1}, mathrm{d}u
        end{equation*}

        In order to evaluate this integral we integrate $ dfrac{log^3(z)}{z^2+1} $ along a keyhole contour and use residue calculus.
        In this case $ log z =ln |z|+iarg z, quad 0<arg z < 2pi $.
        We get
        begin{equation*}
        I = dfrac{pi^3}{16}.
        end{equation*}






        share|cite|improve this answer









        $endgroup$



        Put
        begin{equation*}
        I=int_{0}^1dfrac{arctan x}{x}lnleft(dfrac{1+x^2}{(1-x)^2}right), mathrm{d}x.
        end{equation*}

        Via the substitution $ x=dfrac{z}{z+1}$ we get
        begin{equation*}
        I = int_{0}^{infty}dfrac{arctan frac{z}{z+1}ln(2z^2+2z+1)}{z^2+z}, mathrm{d}z.
        end{equation*}

        Put
        begin{equation*}
        log z=ln|z|+iarg z, quad -pi<arg z <pi.
        end{equation*}

        Then
        begin{equation*}
        arctan frac{z}{z+1}ln(2z^2+2z+1) = text{Im}left(log^2(1+z+iz)right).
        end{equation*}

        Consequently
        begin{equation*}
        I = text{Im}left(int_{0}^{infty}dfrac{log^2(1+z+iz)}{z^2+z}right)mathrm{d}z.
        end{equation*}

        However, $ log(z) $ is an analytic function in $ text{Re} z>0 $. According to Cauchys integral theorem we get the same value if we integrate along the curve with the parametrization $ z=(1-i)s, s>0 $.
        begin{gather*}
        I = text{Im}left(int_{0}^{infty}dfrac{ln^2(2s+1)}{s(s+1-is)}, mathrm{d}sright) = int_{0}^{infty}dfrac{ln^2(2s+1)}{2s^2+2s+1}, mathrm{d}s = \[2ex] int_{0}^{infty}dfrac{2ln^2(2s+1)}{(2s+1)^2+1}, mathrm{d}s = [t=2s+1] = \[2ex] int_{1}^{infty}dfrac{ln^2(t)}{t^2+1}, mathrm{d}t =[u= 1/t] = int_{0}^{1}dfrac{ln^2(u)}{u^2+1}, mathrm{d}u.
        end{gather*}

        Thus
        begin{equation*}
        2I = int_{0}^{infty}dfrac{ln^2(u)}{u^2+1}, mathrm{d}u
        end{equation*}

        In order to evaluate this integral we integrate $ dfrac{log^3(z)}{z^2+1} $ along a keyhole contour and use residue calculus.
        In this case $ log z =ln |z|+iarg z, quad 0<arg z < 2pi $.
        We get
        begin{equation*}
        I = dfrac{pi^3}{16}.
        end{equation*}







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Dec 29 '18 at 23:03









        JanGJanG

        2,802514




        2,802514






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3050696%2fproving-that-int-01-frac-arctan-xx-ln-left-frac1x21-x2-rightd%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Ellipse (mathématiques)

            Quarter-circle Tiles

            Mont Emei