Integration trick $int^{2pi}_{0} f(a+ r cos theta, b+rsin theta)dtheta=2pi f(a,b)$












10












$begingroup$


While looking for some nice integrals that are not taught in school, I found this theorem:




Suppose $f$ is a bivariate harmonic function; $(a,b)$ is a point in the plane; and $r$ is a positive real number. Then,
$$
int^{2pi}_{0} f(a+ r cos theta, b+rsin theta)dtheta=2pi f(a,b)
$$




Is there a nice way to prove the theorem above?



Unfortunately I have no idea how to start proving this, but I suspect it's related to Euler's formula since there is an example there that can be solved that way.





Source $longrightarrow$ Integration Tricks | Brilliant Math & Science Wiki










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    I wonder why the Frullani integral was chosen for demonstration of differential "trick".
    $endgroup$
    – user
    Mar 17 '18 at 13:09












  • $begingroup$
    where can you see that proof?
    $endgroup$
    – Zacky
    Mar 17 '18 at 17:07
















10












$begingroup$


While looking for some nice integrals that are not taught in school, I found this theorem:




Suppose $f$ is a bivariate harmonic function; $(a,b)$ is a point in the plane; and $r$ is a positive real number. Then,
$$
int^{2pi}_{0} f(a+ r cos theta, b+rsin theta)dtheta=2pi f(a,b)
$$




Is there a nice way to prove the theorem above?



Unfortunately I have no idea how to start proving this, but I suspect it's related to Euler's formula since there is an example there that can be solved that way.





Source $longrightarrow$ Integration Tricks | Brilliant Math & Science Wiki










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    I wonder why the Frullani integral was chosen for demonstration of differential "trick".
    $endgroup$
    – user
    Mar 17 '18 at 13:09












  • $begingroup$
    where can you see that proof?
    $endgroup$
    – Zacky
    Mar 17 '18 at 17:07














10












10








10


3



$begingroup$


While looking for some nice integrals that are not taught in school, I found this theorem:




Suppose $f$ is a bivariate harmonic function; $(a,b)$ is a point in the plane; and $r$ is a positive real number. Then,
$$
int^{2pi}_{0} f(a+ r cos theta, b+rsin theta)dtheta=2pi f(a,b)
$$




Is there a nice way to prove the theorem above?



Unfortunately I have no idea how to start proving this, but I suspect it's related to Euler's formula since there is an example there that can be solved that way.





Source $longrightarrow$ Integration Tricks | Brilliant Math & Science Wiki










share|cite|improve this question











$endgroup$




While looking for some nice integrals that are not taught in school, I found this theorem:




Suppose $f$ is a bivariate harmonic function; $(a,b)$ is a point in the plane; and $r$ is a positive real number. Then,
$$
int^{2pi}_{0} f(a+ r cos theta, b+rsin theta)dtheta=2pi f(a,b)
$$




Is there a nice way to prove the theorem above?



Unfortunately I have no idea how to start proving this, but I suspect it's related to Euler's formula since there is an example there that can be solved that way.





Source $longrightarrow$ Integration Tricks | Brilliant Math & Science Wiki







integration proof-writing harmonic-functions






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 23 '18 at 19:34







Zacky

















asked Mar 17 '18 at 12:52









ZackyZacky

6,6851958




6,6851958








  • 1




    $begingroup$
    I wonder why the Frullani integral was chosen for demonstration of differential "trick".
    $endgroup$
    – user
    Mar 17 '18 at 13:09












  • $begingroup$
    where can you see that proof?
    $endgroup$
    – Zacky
    Mar 17 '18 at 17:07














  • 1




    $begingroup$
    I wonder why the Frullani integral was chosen for demonstration of differential "trick".
    $endgroup$
    – user
    Mar 17 '18 at 13:09












  • $begingroup$
    where can you see that proof?
    $endgroup$
    – Zacky
    Mar 17 '18 at 17:07








1




1




$begingroup$
I wonder why the Frullani integral was chosen for demonstration of differential "trick".
$endgroup$
– user
Mar 17 '18 at 13:09






$begingroup$
I wonder why the Frullani integral was chosen for demonstration of differential "trick".
$endgroup$
– user
Mar 17 '18 at 13:09














$begingroup$
where can you see that proof?
$endgroup$
– Zacky
Mar 17 '18 at 17:07




$begingroup$
where can you see that proof?
$endgroup$
– Zacky
Mar 17 '18 at 17:07










2 Answers
2






active

oldest

votes


















8












$begingroup$

Start by writing $f$ as a function of a complex variable in the usual way, so the claimed result is



$$int_0^{2pi} dtheta ,fbigl(z_0+re^{itheta}bigr)=2pi,f(z_0)$$



with $z_0:=a+ib$. Expand the integrand as a Taylor series, viz.



$$sum_{nge 0}frac{f^{(n)}(z_0)}{n!}r^nint_0^{2pi} dtheta ,e^{intheta}.$$



The required result follows from $int_0^{2pi} dtheta, e^{intheta}=2pidelta_{n0}$.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    I am sorry if it's obvious but could you explain how expanding $$f(z_0+re^{itheta})$$ gives $$sum_{nge 0}frac{f^{(n)}(z_0)}{n!} e^{intheta}$$?
    $endgroup$
    – Zacky
    Mar 17 '18 at 13:19






  • 3




    $begingroup$
    @Zacky $f(u+v)=f(u)+f'(u)v+cdots$
    $endgroup$
    – J.G.
    Mar 17 '18 at 13:32










  • $begingroup$
    What is $delta_{n0}$?
    $endgroup$
    – Chase Ryan Taylor
    Mar 17 '18 at 19:35










  • $begingroup$
    @ChaseRyanTaylor en.wikipedia.org/wiki/Kronecker_delta
    $endgroup$
    – J.G.
    Mar 17 '18 at 19:37



















3












$begingroup$

This follows from the Mean Value Theorem for harmonic functions. Let $fin C^2(Omega)$ be a harmonic function on some open domain $Omegasubseteqmathbb{R}^n$ then
$$f(x_0)=frac{1}{text{vol}(B(x_0,r))}int_{B(x_0,r)}f(x),dx=frac{1}{text{vol}(partial B(x_0,r))}int_{partial B(x_0,r)}f(x),dS$$
for every ball $B(x_0,r)subseteq Omega$. Here $partial B(x_0,r)$ is the sphere centered at $x_0$ with radius $r>0$ and $,dS$ is the element of integration on $partial B(x_0,r)$. Using the second formula for $n=2$ we obtain
$$f(x_0)=frac{1}{2pi r}int_{||x-x_0||leqslant r}f(x),dS=frac{1}{2pi }int_0^{2pi}f(x_0+rw(theta)),dtheta$$
where $w(theta):=(cos(theta),sin(theta))$. In particular for $x_0:=(a,b)$ you get the desired result.






share|cite|improve this answer











$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2694952%2fintegration-trick-int2-pi-0-fa-r-cos-theta-br-sin-thetad-theta-2%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    8












    $begingroup$

    Start by writing $f$ as a function of a complex variable in the usual way, so the claimed result is



    $$int_0^{2pi} dtheta ,fbigl(z_0+re^{itheta}bigr)=2pi,f(z_0)$$



    with $z_0:=a+ib$. Expand the integrand as a Taylor series, viz.



    $$sum_{nge 0}frac{f^{(n)}(z_0)}{n!}r^nint_0^{2pi} dtheta ,e^{intheta}.$$



    The required result follows from $int_0^{2pi} dtheta, e^{intheta}=2pidelta_{n0}$.






    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      I am sorry if it's obvious but could you explain how expanding $$f(z_0+re^{itheta})$$ gives $$sum_{nge 0}frac{f^{(n)}(z_0)}{n!} e^{intheta}$$?
      $endgroup$
      – Zacky
      Mar 17 '18 at 13:19






    • 3




      $begingroup$
      @Zacky $f(u+v)=f(u)+f'(u)v+cdots$
      $endgroup$
      – J.G.
      Mar 17 '18 at 13:32










    • $begingroup$
      What is $delta_{n0}$?
      $endgroup$
      – Chase Ryan Taylor
      Mar 17 '18 at 19:35










    • $begingroup$
      @ChaseRyanTaylor en.wikipedia.org/wiki/Kronecker_delta
      $endgroup$
      – J.G.
      Mar 17 '18 at 19:37
















    8












    $begingroup$

    Start by writing $f$ as a function of a complex variable in the usual way, so the claimed result is



    $$int_0^{2pi} dtheta ,fbigl(z_0+re^{itheta}bigr)=2pi,f(z_0)$$



    with $z_0:=a+ib$. Expand the integrand as a Taylor series, viz.



    $$sum_{nge 0}frac{f^{(n)}(z_0)}{n!}r^nint_0^{2pi} dtheta ,e^{intheta}.$$



    The required result follows from $int_0^{2pi} dtheta, e^{intheta}=2pidelta_{n0}$.






    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      I am sorry if it's obvious but could you explain how expanding $$f(z_0+re^{itheta})$$ gives $$sum_{nge 0}frac{f^{(n)}(z_0)}{n!} e^{intheta}$$?
      $endgroup$
      – Zacky
      Mar 17 '18 at 13:19






    • 3




      $begingroup$
      @Zacky $f(u+v)=f(u)+f'(u)v+cdots$
      $endgroup$
      – J.G.
      Mar 17 '18 at 13:32










    • $begingroup$
      What is $delta_{n0}$?
      $endgroup$
      – Chase Ryan Taylor
      Mar 17 '18 at 19:35










    • $begingroup$
      @ChaseRyanTaylor en.wikipedia.org/wiki/Kronecker_delta
      $endgroup$
      – J.G.
      Mar 17 '18 at 19:37














    8












    8








    8





    $begingroup$

    Start by writing $f$ as a function of a complex variable in the usual way, so the claimed result is



    $$int_0^{2pi} dtheta ,fbigl(z_0+re^{itheta}bigr)=2pi,f(z_0)$$



    with $z_0:=a+ib$. Expand the integrand as a Taylor series, viz.



    $$sum_{nge 0}frac{f^{(n)}(z_0)}{n!}r^nint_0^{2pi} dtheta ,e^{intheta}.$$



    The required result follows from $int_0^{2pi} dtheta, e^{intheta}=2pidelta_{n0}$.






    share|cite|improve this answer











    $endgroup$



    Start by writing $f$ as a function of a complex variable in the usual way, so the claimed result is



    $$int_0^{2pi} dtheta ,fbigl(z_0+re^{itheta}bigr)=2pi,f(z_0)$$



    with $z_0:=a+ib$. Expand the integrand as a Taylor series, viz.



    $$sum_{nge 0}frac{f^{(n)}(z_0)}{n!}r^nint_0^{2pi} dtheta ,e^{intheta}.$$



    The required result follows from $int_0^{2pi} dtheta, e^{intheta}=2pidelta_{n0}$.







    share|cite|improve this answer














    share|cite|improve this answer



    share|cite|improve this answer








    edited Dec 23 '18 at 19:49

























    answered Mar 17 '18 at 13:02









    J.G.J.G.

    27.5k22843




    27.5k22843












    • $begingroup$
      I am sorry if it's obvious but could you explain how expanding $$f(z_0+re^{itheta})$$ gives $$sum_{nge 0}frac{f^{(n)}(z_0)}{n!} e^{intheta}$$?
      $endgroup$
      – Zacky
      Mar 17 '18 at 13:19






    • 3




      $begingroup$
      @Zacky $f(u+v)=f(u)+f'(u)v+cdots$
      $endgroup$
      – J.G.
      Mar 17 '18 at 13:32










    • $begingroup$
      What is $delta_{n0}$?
      $endgroup$
      – Chase Ryan Taylor
      Mar 17 '18 at 19:35










    • $begingroup$
      @ChaseRyanTaylor en.wikipedia.org/wiki/Kronecker_delta
      $endgroup$
      – J.G.
      Mar 17 '18 at 19:37


















    • $begingroup$
      I am sorry if it's obvious but could you explain how expanding $$f(z_0+re^{itheta})$$ gives $$sum_{nge 0}frac{f^{(n)}(z_0)}{n!} e^{intheta}$$?
      $endgroup$
      – Zacky
      Mar 17 '18 at 13:19






    • 3




      $begingroup$
      @Zacky $f(u+v)=f(u)+f'(u)v+cdots$
      $endgroup$
      – J.G.
      Mar 17 '18 at 13:32










    • $begingroup$
      What is $delta_{n0}$?
      $endgroup$
      – Chase Ryan Taylor
      Mar 17 '18 at 19:35










    • $begingroup$
      @ChaseRyanTaylor en.wikipedia.org/wiki/Kronecker_delta
      $endgroup$
      – J.G.
      Mar 17 '18 at 19:37
















    $begingroup$
    I am sorry if it's obvious but could you explain how expanding $$f(z_0+re^{itheta})$$ gives $$sum_{nge 0}frac{f^{(n)}(z_0)}{n!} e^{intheta}$$?
    $endgroup$
    – Zacky
    Mar 17 '18 at 13:19




    $begingroup$
    I am sorry if it's obvious but could you explain how expanding $$f(z_0+re^{itheta})$$ gives $$sum_{nge 0}frac{f^{(n)}(z_0)}{n!} e^{intheta}$$?
    $endgroup$
    – Zacky
    Mar 17 '18 at 13:19




    3




    3




    $begingroup$
    @Zacky $f(u+v)=f(u)+f'(u)v+cdots$
    $endgroup$
    – J.G.
    Mar 17 '18 at 13:32




    $begingroup$
    @Zacky $f(u+v)=f(u)+f'(u)v+cdots$
    $endgroup$
    – J.G.
    Mar 17 '18 at 13:32












    $begingroup$
    What is $delta_{n0}$?
    $endgroup$
    – Chase Ryan Taylor
    Mar 17 '18 at 19:35




    $begingroup$
    What is $delta_{n0}$?
    $endgroup$
    – Chase Ryan Taylor
    Mar 17 '18 at 19:35












    $begingroup$
    @ChaseRyanTaylor en.wikipedia.org/wiki/Kronecker_delta
    $endgroup$
    – J.G.
    Mar 17 '18 at 19:37




    $begingroup$
    @ChaseRyanTaylor en.wikipedia.org/wiki/Kronecker_delta
    $endgroup$
    – J.G.
    Mar 17 '18 at 19:37











    3












    $begingroup$

    This follows from the Mean Value Theorem for harmonic functions. Let $fin C^2(Omega)$ be a harmonic function on some open domain $Omegasubseteqmathbb{R}^n$ then
    $$f(x_0)=frac{1}{text{vol}(B(x_0,r))}int_{B(x_0,r)}f(x),dx=frac{1}{text{vol}(partial B(x_0,r))}int_{partial B(x_0,r)}f(x),dS$$
    for every ball $B(x_0,r)subseteq Omega$. Here $partial B(x_0,r)$ is the sphere centered at $x_0$ with radius $r>0$ and $,dS$ is the element of integration on $partial B(x_0,r)$. Using the second formula for $n=2$ we obtain
    $$f(x_0)=frac{1}{2pi r}int_{||x-x_0||leqslant r}f(x),dS=frac{1}{2pi }int_0^{2pi}f(x_0+rw(theta)),dtheta$$
    where $w(theta):=(cos(theta),sin(theta))$. In particular for $x_0:=(a,b)$ you get the desired result.






    share|cite|improve this answer











    $endgroup$


















      3












      $begingroup$

      This follows from the Mean Value Theorem for harmonic functions. Let $fin C^2(Omega)$ be a harmonic function on some open domain $Omegasubseteqmathbb{R}^n$ then
      $$f(x_0)=frac{1}{text{vol}(B(x_0,r))}int_{B(x_0,r)}f(x),dx=frac{1}{text{vol}(partial B(x_0,r))}int_{partial B(x_0,r)}f(x),dS$$
      for every ball $B(x_0,r)subseteq Omega$. Here $partial B(x_0,r)$ is the sphere centered at $x_0$ with radius $r>0$ and $,dS$ is the element of integration on $partial B(x_0,r)$. Using the second formula for $n=2$ we obtain
      $$f(x_0)=frac{1}{2pi r}int_{||x-x_0||leqslant r}f(x),dS=frac{1}{2pi }int_0^{2pi}f(x_0+rw(theta)),dtheta$$
      where $w(theta):=(cos(theta),sin(theta))$. In particular for $x_0:=(a,b)$ you get the desired result.






      share|cite|improve this answer











      $endgroup$
















        3












        3








        3





        $begingroup$

        This follows from the Mean Value Theorem for harmonic functions. Let $fin C^2(Omega)$ be a harmonic function on some open domain $Omegasubseteqmathbb{R}^n$ then
        $$f(x_0)=frac{1}{text{vol}(B(x_0,r))}int_{B(x_0,r)}f(x),dx=frac{1}{text{vol}(partial B(x_0,r))}int_{partial B(x_0,r)}f(x),dS$$
        for every ball $B(x_0,r)subseteq Omega$. Here $partial B(x_0,r)$ is the sphere centered at $x_0$ with radius $r>0$ and $,dS$ is the element of integration on $partial B(x_0,r)$. Using the second formula for $n=2$ we obtain
        $$f(x_0)=frac{1}{2pi r}int_{||x-x_0||leqslant r}f(x),dS=frac{1}{2pi }int_0^{2pi}f(x_0+rw(theta)),dtheta$$
        where $w(theta):=(cos(theta),sin(theta))$. In particular for $x_0:=(a,b)$ you get the desired result.






        share|cite|improve this answer











        $endgroup$



        This follows from the Mean Value Theorem for harmonic functions. Let $fin C^2(Omega)$ be a harmonic function on some open domain $Omegasubseteqmathbb{R}^n$ then
        $$f(x_0)=frac{1}{text{vol}(B(x_0,r))}int_{B(x_0,r)}f(x),dx=frac{1}{text{vol}(partial B(x_0,r))}int_{partial B(x_0,r)}f(x),dS$$
        for every ball $B(x_0,r)subseteq Omega$. Here $partial B(x_0,r)$ is the sphere centered at $x_0$ with radius $r>0$ and $,dS$ is the element of integration on $partial B(x_0,r)$. Using the second formula for $n=2$ we obtain
        $$f(x_0)=frac{1}{2pi r}int_{||x-x_0||leqslant r}f(x),dS=frac{1}{2pi }int_0^{2pi}f(x_0+rw(theta)),dtheta$$
        where $w(theta):=(cos(theta),sin(theta))$. In particular for $x_0:=(a,b)$ you get the desired result.







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Mar 17 '18 at 16:01

























        answered Mar 17 '18 at 13:21









        ArianArian

        5,310917




        5,310917






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2694952%2fintegration-trick-int2-pi-0-fa-r-cos-theta-br-sin-thetad-theta-2%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Ellipse (mathématiques)

            Quarter-circle Tiles

            Mont Emei