Integration trick $int^{2pi}_{0} f(a+ r cos theta, b+rsin theta)dtheta=2pi f(a,b)$
$begingroup$
While looking for some nice integrals that are not taught in school, I found this theorem:
Suppose $f$ is a bivariate harmonic function; $(a,b)$ is a point in the plane; and $r$ is a positive real number. Then,
$$
int^{2pi}_{0} f(a+ r cos theta, b+rsin theta)dtheta=2pi f(a,b)
$$
Is there a nice way to prove the theorem above?
Unfortunately I have no idea how to start proving this, but I suspect it's related to Euler's formula since there is an example there that can be solved that way.
Source $longrightarrow$ Integration Tricks | Brilliant Math & Science Wiki
integration proof-writing harmonic-functions
$endgroup$
add a comment |
$begingroup$
While looking for some nice integrals that are not taught in school, I found this theorem:
Suppose $f$ is a bivariate harmonic function; $(a,b)$ is a point in the plane; and $r$ is a positive real number. Then,
$$
int^{2pi}_{0} f(a+ r cos theta, b+rsin theta)dtheta=2pi f(a,b)
$$
Is there a nice way to prove the theorem above?
Unfortunately I have no idea how to start proving this, but I suspect it's related to Euler's formula since there is an example there that can be solved that way.
Source $longrightarrow$ Integration Tricks | Brilliant Math & Science Wiki
integration proof-writing harmonic-functions
$endgroup$
1
$begingroup$
I wonder why the Frullani integral was chosen for demonstration of differential "trick".
$endgroup$
– user
Mar 17 '18 at 13:09
$begingroup$
where can you see that proof?
$endgroup$
– Zacky
Mar 17 '18 at 17:07
add a comment |
$begingroup$
While looking for some nice integrals that are not taught in school, I found this theorem:
Suppose $f$ is a bivariate harmonic function; $(a,b)$ is a point in the plane; and $r$ is a positive real number. Then,
$$
int^{2pi}_{0} f(a+ r cos theta, b+rsin theta)dtheta=2pi f(a,b)
$$
Is there a nice way to prove the theorem above?
Unfortunately I have no idea how to start proving this, but I suspect it's related to Euler's formula since there is an example there that can be solved that way.
Source $longrightarrow$ Integration Tricks | Brilliant Math & Science Wiki
integration proof-writing harmonic-functions
$endgroup$
While looking for some nice integrals that are not taught in school, I found this theorem:
Suppose $f$ is a bivariate harmonic function; $(a,b)$ is a point in the plane; and $r$ is a positive real number. Then,
$$
int^{2pi}_{0} f(a+ r cos theta, b+rsin theta)dtheta=2pi f(a,b)
$$
Is there a nice way to prove the theorem above?
Unfortunately I have no idea how to start proving this, but I suspect it's related to Euler's formula since there is an example there that can be solved that way.
Source $longrightarrow$ Integration Tricks | Brilliant Math & Science Wiki
integration proof-writing harmonic-functions
integration proof-writing harmonic-functions
edited Dec 23 '18 at 19:34
Zacky
asked Mar 17 '18 at 12:52
ZackyZacky
6,6851958
6,6851958
1
$begingroup$
I wonder why the Frullani integral was chosen for demonstration of differential "trick".
$endgroup$
– user
Mar 17 '18 at 13:09
$begingroup$
where can you see that proof?
$endgroup$
– Zacky
Mar 17 '18 at 17:07
add a comment |
1
$begingroup$
I wonder why the Frullani integral was chosen for demonstration of differential "trick".
$endgroup$
– user
Mar 17 '18 at 13:09
$begingroup$
where can you see that proof?
$endgroup$
– Zacky
Mar 17 '18 at 17:07
1
1
$begingroup$
I wonder why the Frullani integral was chosen for demonstration of differential "trick".
$endgroup$
– user
Mar 17 '18 at 13:09
$begingroup$
I wonder why the Frullani integral was chosen for demonstration of differential "trick".
$endgroup$
– user
Mar 17 '18 at 13:09
$begingroup$
where can you see that proof?
$endgroup$
– Zacky
Mar 17 '18 at 17:07
$begingroup$
where can you see that proof?
$endgroup$
– Zacky
Mar 17 '18 at 17:07
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Start by writing $f$ as a function of a complex variable in the usual way, so the claimed result is
$$int_0^{2pi} dtheta ,fbigl(z_0+re^{itheta}bigr)=2pi,f(z_0)$$
with $z_0:=a+ib$. Expand the integrand as a Taylor series, viz.
$$sum_{nge 0}frac{f^{(n)}(z_0)}{n!}r^nint_0^{2pi} dtheta ,e^{intheta}.$$
The required result follows from $int_0^{2pi} dtheta, e^{intheta}=2pidelta_{n0}$.
$endgroup$
$begingroup$
I am sorry if it's obvious but could you explain how expanding $$f(z_0+re^{itheta})$$ gives $$sum_{nge 0}frac{f^{(n)}(z_0)}{n!} e^{intheta}$$?
$endgroup$
– Zacky
Mar 17 '18 at 13:19
3
$begingroup$
@Zacky $f(u+v)=f(u)+f'(u)v+cdots$
$endgroup$
– J.G.
Mar 17 '18 at 13:32
$begingroup$
What is $delta_{n0}$?
$endgroup$
– Chase Ryan Taylor
Mar 17 '18 at 19:35
$begingroup$
@ChaseRyanTaylor en.wikipedia.org/wiki/Kronecker_delta
$endgroup$
– J.G.
Mar 17 '18 at 19:37
add a comment |
$begingroup$
This follows from the Mean Value Theorem for harmonic functions. Let $fin C^2(Omega)$ be a harmonic function on some open domain $Omegasubseteqmathbb{R}^n$ then
$$f(x_0)=frac{1}{text{vol}(B(x_0,r))}int_{B(x_0,r)}f(x),dx=frac{1}{text{vol}(partial B(x_0,r))}int_{partial B(x_0,r)}f(x),dS$$
for every ball $B(x_0,r)subseteq Omega$. Here $partial B(x_0,r)$ is the sphere centered at $x_0$ with radius $r>0$ and $,dS$ is the element of integration on $partial B(x_0,r)$. Using the second formula for $n=2$ we obtain
$$f(x_0)=frac{1}{2pi r}int_{||x-x_0||leqslant r}f(x),dS=frac{1}{2pi }int_0^{2pi}f(x_0+rw(theta)),dtheta$$
where $w(theta):=(cos(theta),sin(theta))$. In particular for $x_0:=(a,b)$ you get the desired result.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2694952%2fintegration-trick-int2-pi-0-fa-r-cos-theta-br-sin-thetad-theta-2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Start by writing $f$ as a function of a complex variable in the usual way, so the claimed result is
$$int_0^{2pi} dtheta ,fbigl(z_0+re^{itheta}bigr)=2pi,f(z_0)$$
with $z_0:=a+ib$. Expand the integrand as a Taylor series, viz.
$$sum_{nge 0}frac{f^{(n)}(z_0)}{n!}r^nint_0^{2pi} dtheta ,e^{intheta}.$$
The required result follows from $int_0^{2pi} dtheta, e^{intheta}=2pidelta_{n0}$.
$endgroup$
$begingroup$
I am sorry if it's obvious but could you explain how expanding $$f(z_0+re^{itheta})$$ gives $$sum_{nge 0}frac{f^{(n)}(z_0)}{n!} e^{intheta}$$?
$endgroup$
– Zacky
Mar 17 '18 at 13:19
3
$begingroup$
@Zacky $f(u+v)=f(u)+f'(u)v+cdots$
$endgroup$
– J.G.
Mar 17 '18 at 13:32
$begingroup$
What is $delta_{n0}$?
$endgroup$
– Chase Ryan Taylor
Mar 17 '18 at 19:35
$begingroup$
@ChaseRyanTaylor en.wikipedia.org/wiki/Kronecker_delta
$endgroup$
– J.G.
Mar 17 '18 at 19:37
add a comment |
$begingroup$
Start by writing $f$ as a function of a complex variable in the usual way, so the claimed result is
$$int_0^{2pi} dtheta ,fbigl(z_0+re^{itheta}bigr)=2pi,f(z_0)$$
with $z_0:=a+ib$. Expand the integrand as a Taylor series, viz.
$$sum_{nge 0}frac{f^{(n)}(z_0)}{n!}r^nint_0^{2pi} dtheta ,e^{intheta}.$$
The required result follows from $int_0^{2pi} dtheta, e^{intheta}=2pidelta_{n0}$.
$endgroup$
$begingroup$
I am sorry if it's obvious but could you explain how expanding $$f(z_0+re^{itheta})$$ gives $$sum_{nge 0}frac{f^{(n)}(z_0)}{n!} e^{intheta}$$?
$endgroup$
– Zacky
Mar 17 '18 at 13:19
3
$begingroup$
@Zacky $f(u+v)=f(u)+f'(u)v+cdots$
$endgroup$
– J.G.
Mar 17 '18 at 13:32
$begingroup$
What is $delta_{n0}$?
$endgroup$
– Chase Ryan Taylor
Mar 17 '18 at 19:35
$begingroup$
@ChaseRyanTaylor en.wikipedia.org/wiki/Kronecker_delta
$endgroup$
– J.G.
Mar 17 '18 at 19:37
add a comment |
$begingroup$
Start by writing $f$ as a function of a complex variable in the usual way, so the claimed result is
$$int_0^{2pi} dtheta ,fbigl(z_0+re^{itheta}bigr)=2pi,f(z_0)$$
with $z_0:=a+ib$. Expand the integrand as a Taylor series, viz.
$$sum_{nge 0}frac{f^{(n)}(z_0)}{n!}r^nint_0^{2pi} dtheta ,e^{intheta}.$$
The required result follows from $int_0^{2pi} dtheta, e^{intheta}=2pidelta_{n0}$.
$endgroup$
Start by writing $f$ as a function of a complex variable in the usual way, so the claimed result is
$$int_0^{2pi} dtheta ,fbigl(z_0+re^{itheta}bigr)=2pi,f(z_0)$$
with $z_0:=a+ib$. Expand the integrand as a Taylor series, viz.
$$sum_{nge 0}frac{f^{(n)}(z_0)}{n!}r^nint_0^{2pi} dtheta ,e^{intheta}.$$
The required result follows from $int_0^{2pi} dtheta, e^{intheta}=2pidelta_{n0}$.
edited Dec 23 '18 at 19:49
answered Mar 17 '18 at 13:02
J.G.J.G.
27.5k22843
27.5k22843
$begingroup$
I am sorry if it's obvious but could you explain how expanding $$f(z_0+re^{itheta})$$ gives $$sum_{nge 0}frac{f^{(n)}(z_0)}{n!} e^{intheta}$$?
$endgroup$
– Zacky
Mar 17 '18 at 13:19
3
$begingroup$
@Zacky $f(u+v)=f(u)+f'(u)v+cdots$
$endgroup$
– J.G.
Mar 17 '18 at 13:32
$begingroup$
What is $delta_{n0}$?
$endgroup$
– Chase Ryan Taylor
Mar 17 '18 at 19:35
$begingroup$
@ChaseRyanTaylor en.wikipedia.org/wiki/Kronecker_delta
$endgroup$
– J.G.
Mar 17 '18 at 19:37
add a comment |
$begingroup$
I am sorry if it's obvious but could you explain how expanding $$f(z_0+re^{itheta})$$ gives $$sum_{nge 0}frac{f^{(n)}(z_0)}{n!} e^{intheta}$$?
$endgroup$
– Zacky
Mar 17 '18 at 13:19
3
$begingroup$
@Zacky $f(u+v)=f(u)+f'(u)v+cdots$
$endgroup$
– J.G.
Mar 17 '18 at 13:32
$begingroup$
What is $delta_{n0}$?
$endgroup$
– Chase Ryan Taylor
Mar 17 '18 at 19:35
$begingroup$
@ChaseRyanTaylor en.wikipedia.org/wiki/Kronecker_delta
$endgroup$
– J.G.
Mar 17 '18 at 19:37
$begingroup$
I am sorry if it's obvious but could you explain how expanding $$f(z_0+re^{itheta})$$ gives $$sum_{nge 0}frac{f^{(n)}(z_0)}{n!} e^{intheta}$$?
$endgroup$
– Zacky
Mar 17 '18 at 13:19
$begingroup$
I am sorry if it's obvious but could you explain how expanding $$f(z_0+re^{itheta})$$ gives $$sum_{nge 0}frac{f^{(n)}(z_0)}{n!} e^{intheta}$$?
$endgroup$
– Zacky
Mar 17 '18 at 13:19
3
3
$begingroup$
@Zacky $f(u+v)=f(u)+f'(u)v+cdots$
$endgroup$
– J.G.
Mar 17 '18 at 13:32
$begingroup$
@Zacky $f(u+v)=f(u)+f'(u)v+cdots$
$endgroup$
– J.G.
Mar 17 '18 at 13:32
$begingroup$
What is $delta_{n0}$?
$endgroup$
– Chase Ryan Taylor
Mar 17 '18 at 19:35
$begingroup$
What is $delta_{n0}$?
$endgroup$
– Chase Ryan Taylor
Mar 17 '18 at 19:35
$begingroup$
@ChaseRyanTaylor en.wikipedia.org/wiki/Kronecker_delta
$endgroup$
– J.G.
Mar 17 '18 at 19:37
$begingroup$
@ChaseRyanTaylor en.wikipedia.org/wiki/Kronecker_delta
$endgroup$
– J.G.
Mar 17 '18 at 19:37
add a comment |
$begingroup$
This follows from the Mean Value Theorem for harmonic functions. Let $fin C^2(Omega)$ be a harmonic function on some open domain $Omegasubseteqmathbb{R}^n$ then
$$f(x_0)=frac{1}{text{vol}(B(x_0,r))}int_{B(x_0,r)}f(x),dx=frac{1}{text{vol}(partial B(x_0,r))}int_{partial B(x_0,r)}f(x),dS$$
for every ball $B(x_0,r)subseteq Omega$. Here $partial B(x_0,r)$ is the sphere centered at $x_0$ with radius $r>0$ and $,dS$ is the element of integration on $partial B(x_0,r)$. Using the second formula for $n=2$ we obtain
$$f(x_0)=frac{1}{2pi r}int_{||x-x_0||leqslant r}f(x),dS=frac{1}{2pi }int_0^{2pi}f(x_0+rw(theta)),dtheta$$
where $w(theta):=(cos(theta),sin(theta))$. In particular for $x_0:=(a,b)$ you get the desired result.
$endgroup$
add a comment |
$begingroup$
This follows from the Mean Value Theorem for harmonic functions. Let $fin C^2(Omega)$ be a harmonic function on some open domain $Omegasubseteqmathbb{R}^n$ then
$$f(x_0)=frac{1}{text{vol}(B(x_0,r))}int_{B(x_0,r)}f(x),dx=frac{1}{text{vol}(partial B(x_0,r))}int_{partial B(x_0,r)}f(x),dS$$
for every ball $B(x_0,r)subseteq Omega$. Here $partial B(x_0,r)$ is the sphere centered at $x_0$ with radius $r>0$ and $,dS$ is the element of integration on $partial B(x_0,r)$. Using the second formula for $n=2$ we obtain
$$f(x_0)=frac{1}{2pi r}int_{||x-x_0||leqslant r}f(x),dS=frac{1}{2pi }int_0^{2pi}f(x_0+rw(theta)),dtheta$$
where $w(theta):=(cos(theta),sin(theta))$. In particular for $x_0:=(a,b)$ you get the desired result.
$endgroup$
add a comment |
$begingroup$
This follows from the Mean Value Theorem for harmonic functions. Let $fin C^2(Omega)$ be a harmonic function on some open domain $Omegasubseteqmathbb{R}^n$ then
$$f(x_0)=frac{1}{text{vol}(B(x_0,r))}int_{B(x_0,r)}f(x),dx=frac{1}{text{vol}(partial B(x_0,r))}int_{partial B(x_0,r)}f(x),dS$$
for every ball $B(x_0,r)subseteq Omega$. Here $partial B(x_0,r)$ is the sphere centered at $x_0$ with radius $r>0$ and $,dS$ is the element of integration on $partial B(x_0,r)$. Using the second formula for $n=2$ we obtain
$$f(x_0)=frac{1}{2pi r}int_{||x-x_0||leqslant r}f(x),dS=frac{1}{2pi }int_0^{2pi}f(x_0+rw(theta)),dtheta$$
where $w(theta):=(cos(theta),sin(theta))$. In particular for $x_0:=(a,b)$ you get the desired result.
$endgroup$
This follows from the Mean Value Theorem for harmonic functions. Let $fin C^2(Omega)$ be a harmonic function on some open domain $Omegasubseteqmathbb{R}^n$ then
$$f(x_0)=frac{1}{text{vol}(B(x_0,r))}int_{B(x_0,r)}f(x),dx=frac{1}{text{vol}(partial B(x_0,r))}int_{partial B(x_0,r)}f(x),dS$$
for every ball $B(x_0,r)subseteq Omega$. Here $partial B(x_0,r)$ is the sphere centered at $x_0$ with radius $r>0$ and $,dS$ is the element of integration on $partial B(x_0,r)$. Using the second formula for $n=2$ we obtain
$$f(x_0)=frac{1}{2pi r}int_{||x-x_0||leqslant r}f(x),dS=frac{1}{2pi }int_0^{2pi}f(x_0+rw(theta)),dtheta$$
where $w(theta):=(cos(theta),sin(theta))$. In particular for $x_0:=(a,b)$ you get the desired result.
edited Mar 17 '18 at 16:01
answered Mar 17 '18 at 13:21
ArianArian
5,310917
5,310917
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2694952%2fintegration-trick-int2-pi-0-fa-r-cos-theta-br-sin-thetad-theta-2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
I wonder why the Frullani integral was chosen for demonstration of differential "trick".
$endgroup$
– user
Mar 17 '18 at 13:09
$begingroup$
where can you see that proof?
$endgroup$
– Zacky
Mar 17 '18 at 17:07