Proof that $lim_{n to infty} n[log (n+1)-log(n)]=1$
$begingroup$
Can someone explain me why $lim_{n to infty} n[log (n+1)-log(n)]=1$? Isn't that an indeterminate form? I mean, since $lim_{n to infty} n = infty$ and $lim_{n to infty} [log (n+1)-log(n)] = 0$ then $lim_{n to infty} a_n b_n=0 cdotinfty$?
I'm just starting with sequences, and I have no idea what to do.
calculus sequences-and-series limits
$endgroup$
add a comment |
$begingroup$
Can someone explain me why $lim_{n to infty} n[log (n+1)-log(n)]=1$? Isn't that an indeterminate form? I mean, since $lim_{n to infty} n = infty$ and $lim_{n to infty} [log (n+1)-log(n)] = 0$ then $lim_{n to infty} a_n b_n=0 cdotinfty$?
I'm just starting with sequences, and I have no idea what to do.
calculus sequences-and-series limits
$endgroup$
1
$begingroup$
You can only say that $lim a_n b_n = lim a_n cdot lim b_n$, if both limits exist. If one is $infty$, as in your example, the rule doesn't apply.
$endgroup$
– Viktor Glombik
Dec 23 '18 at 22:12
$begingroup$
You may think of $log n$ as $int_{1}^{infty}frac1x dx$.
$endgroup$
– Leila
Dec 24 '18 at 15:09
add a comment |
$begingroup$
Can someone explain me why $lim_{n to infty} n[log (n+1)-log(n)]=1$? Isn't that an indeterminate form? I mean, since $lim_{n to infty} n = infty$ and $lim_{n to infty} [log (n+1)-log(n)] = 0$ then $lim_{n to infty} a_n b_n=0 cdotinfty$?
I'm just starting with sequences, and I have no idea what to do.
calculus sequences-and-series limits
$endgroup$
Can someone explain me why $lim_{n to infty} n[log (n+1)-log(n)]=1$? Isn't that an indeterminate form? I mean, since $lim_{n to infty} n = infty$ and $lim_{n to infty} [log (n+1)-log(n)] = 0$ then $lim_{n to infty} a_n b_n=0 cdotinfty$?
I'm just starting with sequences, and I have no idea what to do.
calculus sequences-and-series limits
calculus sequences-and-series limits
asked Dec 23 '18 at 22:09
parishiltonparishilton
19310
19310
1
$begingroup$
You can only say that $lim a_n b_n = lim a_n cdot lim b_n$, if both limits exist. If one is $infty$, as in your example, the rule doesn't apply.
$endgroup$
– Viktor Glombik
Dec 23 '18 at 22:12
$begingroup$
You may think of $log n$ as $int_{1}^{infty}frac1x dx$.
$endgroup$
– Leila
Dec 24 '18 at 15:09
add a comment |
1
$begingroup$
You can only say that $lim a_n b_n = lim a_n cdot lim b_n$, if both limits exist. If one is $infty$, as in your example, the rule doesn't apply.
$endgroup$
– Viktor Glombik
Dec 23 '18 at 22:12
$begingroup$
You may think of $log n$ as $int_{1}^{infty}frac1x dx$.
$endgroup$
– Leila
Dec 24 '18 at 15:09
1
1
$begingroup$
You can only say that $lim a_n b_n = lim a_n cdot lim b_n$, if both limits exist. If one is $infty$, as in your example, the rule doesn't apply.
$endgroup$
– Viktor Glombik
Dec 23 '18 at 22:12
$begingroup$
You can only say that $lim a_n b_n = lim a_n cdot lim b_n$, if both limits exist. If one is $infty$, as in your example, the rule doesn't apply.
$endgroup$
– Viktor Glombik
Dec 23 '18 at 22:12
$begingroup$
You may think of $log n$ as $int_{1}^{infty}frac1x dx$.
$endgroup$
– Leila
Dec 24 '18 at 15:09
$begingroup$
You may think of $log n$ as $int_{1}^{infty}frac1x dx$.
$endgroup$
– Leila
Dec 24 '18 at 15:09
add a comment |
4 Answers
4
active
oldest
votes
$begingroup$
As an alternative without L'Hopital, but rather using the very well known limit:
$$
begin{align}
lim_{ntoinfty}left(ncdotleft(ln(n+1) - ln nright)right) &= lim_{ntoinfty}left(ncdotlnleft(frac{n+1}{n}right)right) \
&= lim_{ntoinfty} lnleft(frac{n+1}{n}right)^n\
&= ln lim_{ntoinfty}left(1+frac{1}{n}right)^n\
&= ln e \
&= 1
end{align}
$$
I'm assuming you used $log x$ for $log_ex$ or simply $ln x$.
$endgroup$
add a comment |
$begingroup$
If you already know the rule of L'HOSPITAL, the calculation could go as follows
begin{align*}
L
:= lim_{n to infty} n cdot log left( frac{n + 1}{n} right)
= lim_{n to infty} frac{log left( frac{n + 1}{n} right)}{frac{1}{n}}
end{align*}
(here I am only using logarithm and fraction properties)
Now this in an indeterminate form ''$frac{0}{0}$'', so we can apply the above mentioned rule by differentiating the numerator and the denominator:
begin{align*}
L
= lim_{n to infty} frac{frac{n}{n + 1} left( frac{1}{n} -frac{n + 1}{n^2} right)}{- frac{1}{n^2}}
= lim_{n to infty} frac{n}{n + 1}
= 1.
end{align*}
This follows because
begin{equation*}
frac{d}{dx} frac{1}{x}
= frac{d}{dx} x^{-1}
= - x^{-2}
end{equation*}
and
begin{equation*}
frac{d}{dx} logleft(frac{x + 1}{x} right)
= frac{d}{dx} log(x + 1) - frac{d}{dx} log(x)
= frac{1}{x + 1} - frac{1}{x}
= frac{x}{x + 1} left( frac{1}{x} -frac{x + 1}{x^2} right)
end{equation*}
$endgroup$
add a comment |
$begingroup$
It's because it can rewritten as
$$nlogfrac{n+1}n=nlogBigl(1+frac1nBigr)=frac{logBigl(1+dfrac1nBigr)}{dfrac1n}$$
Set $u=dfrac1n$. This expression becomes $dfrac{log(1+u)}u$, and it is standard from high school that the limit of this quotient as $uto 0$ is$;bigl(log(1+u)bigr)'_{u=0},:$ i.e. $:1$.
$endgroup$
add a comment |
$begingroup$
You could even go beyond the limit. Write
$$a_n= n[log (n+1)-log(n)]=n logleft(frac{n+1}n right)=n logleft(1+frac{1}n right)$$
Now, remembering that for small $x$
$$log(1+x)=x-frac{x^2}{2}+frac{x^3}{3}+Oleft(x^4right)$$ make $x=frac 1 n$ to get
$$a_n=nleft(frac{1}{n}-frac{1}{2 n^2}+frac{1}{3
n^3}+Oleft(frac{1}{n^4}right)right)=1-frac{1}{2 n}+frac{1}{3
n^2}+Oleft(frac{1}{n^3}right)$$
Just try it for $n=10$. You will get
$$a_{10}=10 ,log left(frac{11}{10}right)approx 0.953102$$ while the above expansion would give
$$a_{10}simeq frac{143}{150}approx 0.953333$$
$endgroup$
$begingroup$
This time faster than @gimusi :)
$endgroup$
– roman
Dec 24 '18 at 11:38
1
$begingroup$
@roman. For once !! By the way, Merry Xmas
$endgroup$
– Claude Leibovici
Dec 24 '18 at 11:40
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3050740%2fproof-that-lim-n-to-infty-n-log-n1-logn-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
As an alternative without L'Hopital, but rather using the very well known limit:
$$
begin{align}
lim_{ntoinfty}left(ncdotleft(ln(n+1) - ln nright)right) &= lim_{ntoinfty}left(ncdotlnleft(frac{n+1}{n}right)right) \
&= lim_{ntoinfty} lnleft(frac{n+1}{n}right)^n\
&= ln lim_{ntoinfty}left(1+frac{1}{n}right)^n\
&= ln e \
&= 1
end{align}
$$
I'm assuming you used $log x$ for $log_ex$ or simply $ln x$.
$endgroup$
add a comment |
$begingroup$
As an alternative without L'Hopital, but rather using the very well known limit:
$$
begin{align}
lim_{ntoinfty}left(ncdotleft(ln(n+1) - ln nright)right) &= lim_{ntoinfty}left(ncdotlnleft(frac{n+1}{n}right)right) \
&= lim_{ntoinfty} lnleft(frac{n+1}{n}right)^n\
&= ln lim_{ntoinfty}left(1+frac{1}{n}right)^n\
&= ln e \
&= 1
end{align}
$$
I'm assuming you used $log x$ for $log_ex$ or simply $ln x$.
$endgroup$
add a comment |
$begingroup$
As an alternative without L'Hopital, but rather using the very well known limit:
$$
begin{align}
lim_{ntoinfty}left(ncdotleft(ln(n+1) - ln nright)right) &= lim_{ntoinfty}left(ncdotlnleft(frac{n+1}{n}right)right) \
&= lim_{ntoinfty} lnleft(frac{n+1}{n}right)^n\
&= ln lim_{ntoinfty}left(1+frac{1}{n}right)^n\
&= ln e \
&= 1
end{align}
$$
I'm assuming you used $log x$ for $log_ex$ or simply $ln x$.
$endgroup$
As an alternative without L'Hopital, but rather using the very well known limit:
$$
begin{align}
lim_{ntoinfty}left(ncdotleft(ln(n+1) - ln nright)right) &= lim_{ntoinfty}left(ncdotlnleft(frac{n+1}{n}right)right) \
&= lim_{ntoinfty} lnleft(frac{n+1}{n}right)^n\
&= ln lim_{ntoinfty}left(1+frac{1}{n}right)^n\
&= ln e \
&= 1
end{align}
$$
I'm assuming you used $log x$ for $log_ex$ or simply $ln x$.
edited Dec 23 '18 at 22:29
Viktor Glombik
9381527
9381527
answered Dec 23 '18 at 22:19
romanroman
2,28421224
2,28421224
add a comment |
add a comment |
$begingroup$
If you already know the rule of L'HOSPITAL, the calculation could go as follows
begin{align*}
L
:= lim_{n to infty} n cdot log left( frac{n + 1}{n} right)
= lim_{n to infty} frac{log left( frac{n + 1}{n} right)}{frac{1}{n}}
end{align*}
(here I am only using logarithm and fraction properties)
Now this in an indeterminate form ''$frac{0}{0}$'', so we can apply the above mentioned rule by differentiating the numerator and the denominator:
begin{align*}
L
= lim_{n to infty} frac{frac{n}{n + 1} left( frac{1}{n} -frac{n + 1}{n^2} right)}{- frac{1}{n^2}}
= lim_{n to infty} frac{n}{n + 1}
= 1.
end{align*}
This follows because
begin{equation*}
frac{d}{dx} frac{1}{x}
= frac{d}{dx} x^{-1}
= - x^{-2}
end{equation*}
and
begin{equation*}
frac{d}{dx} logleft(frac{x + 1}{x} right)
= frac{d}{dx} log(x + 1) - frac{d}{dx} log(x)
= frac{1}{x + 1} - frac{1}{x}
= frac{x}{x + 1} left( frac{1}{x} -frac{x + 1}{x^2} right)
end{equation*}
$endgroup$
add a comment |
$begingroup$
If you already know the rule of L'HOSPITAL, the calculation could go as follows
begin{align*}
L
:= lim_{n to infty} n cdot log left( frac{n + 1}{n} right)
= lim_{n to infty} frac{log left( frac{n + 1}{n} right)}{frac{1}{n}}
end{align*}
(here I am only using logarithm and fraction properties)
Now this in an indeterminate form ''$frac{0}{0}$'', so we can apply the above mentioned rule by differentiating the numerator and the denominator:
begin{align*}
L
= lim_{n to infty} frac{frac{n}{n + 1} left( frac{1}{n} -frac{n + 1}{n^2} right)}{- frac{1}{n^2}}
= lim_{n to infty} frac{n}{n + 1}
= 1.
end{align*}
This follows because
begin{equation*}
frac{d}{dx} frac{1}{x}
= frac{d}{dx} x^{-1}
= - x^{-2}
end{equation*}
and
begin{equation*}
frac{d}{dx} logleft(frac{x + 1}{x} right)
= frac{d}{dx} log(x + 1) - frac{d}{dx} log(x)
= frac{1}{x + 1} - frac{1}{x}
= frac{x}{x + 1} left( frac{1}{x} -frac{x + 1}{x^2} right)
end{equation*}
$endgroup$
add a comment |
$begingroup$
If you already know the rule of L'HOSPITAL, the calculation could go as follows
begin{align*}
L
:= lim_{n to infty} n cdot log left( frac{n + 1}{n} right)
= lim_{n to infty} frac{log left( frac{n + 1}{n} right)}{frac{1}{n}}
end{align*}
(here I am only using logarithm and fraction properties)
Now this in an indeterminate form ''$frac{0}{0}$'', so we can apply the above mentioned rule by differentiating the numerator and the denominator:
begin{align*}
L
= lim_{n to infty} frac{frac{n}{n + 1} left( frac{1}{n} -frac{n + 1}{n^2} right)}{- frac{1}{n^2}}
= lim_{n to infty} frac{n}{n + 1}
= 1.
end{align*}
This follows because
begin{equation*}
frac{d}{dx} frac{1}{x}
= frac{d}{dx} x^{-1}
= - x^{-2}
end{equation*}
and
begin{equation*}
frac{d}{dx} logleft(frac{x + 1}{x} right)
= frac{d}{dx} log(x + 1) - frac{d}{dx} log(x)
= frac{1}{x + 1} - frac{1}{x}
= frac{x}{x + 1} left( frac{1}{x} -frac{x + 1}{x^2} right)
end{equation*}
$endgroup$
If you already know the rule of L'HOSPITAL, the calculation could go as follows
begin{align*}
L
:= lim_{n to infty} n cdot log left( frac{n + 1}{n} right)
= lim_{n to infty} frac{log left( frac{n + 1}{n} right)}{frac{1}{n}}
end{align*}
(here I am only using logarithm and fraction properties)
Now this in an indeterminate form ''$frac{0}{0}$'', so we can apply the above mentioned rule by differentiating the numerator and the denominator:
begin{align*}
L
= lim_{n to infty} frac{frac{n}{n + 1} left( frac{1}{n} -frac{n + 1}{n^2} right)}{- frac{1}{n^2}}
= lim_{n to infty} frac{n}{n + 1}
= 1.
end{align*}
This follows because
begin{equation*}
frac{d}{dx} frac{1}{x}
= frac{d}{dx} x^{-1}
= - x^{-2}
end{equation*}
and
begin{equation*}
frac{d}{dx} logleft(frac{x + 1}{x} right)
= frac{d}{dx} log(x + 1) - frac{d}{dx} log(x)
= frac{1}{x + 1} - frac{1}{x}
= frac{x}{x + 1} left( frac{1}{x} -frac{x + 1}{x^2} right)
end{equation*}
answered Dec 23 '18 at 22:17
Viktor GlombikViktor Glombik
9381527
9381527
add a comment |
add a comment |
$begingroup$
It's because it can rewritten as
$$nlogfrac{n+1}n=nlogBigl(1+frac1nBigr)=frac{logBigl(1+dfrac1nBigr)}{dfrac1n}$$
Set $u=dfrac1n$. This expression becomes $dfrac{log(1+u)}u$, and it is standard from high school that the limit of this quotient as $uto 0$ is$;bigl(log(1+u)bigr)'_{u=0},:$ i.e. $:1$.
$endgroup$
add a comment |
$begingroup$
It's because it can rewritten as
$$nlogfrac{n+1}n=nlogBigl(1+frac1nBigr)=frac{logBigl(1+dfrac1nBigr)}{dfrac1n}$$
Set $u=dfrac1n$. This expression becomes $dfrac{log(1+u)}u$, and it is standard from high school that the limit of this quotient as $uto 0$ is$;bigl(log(1+u)bigr)'_{u=0},:$ i.e. $:1$.
$endgroup$
add a comment |
$begingroup$
It's because it can rewritten as
$$nlogfrac{n+1}n=nlogBigl(1+frac1nBigr)=frac{logBigl(1+dfrac1nBigr)}{dfrac1n}$$
Set $u=dfrac1n$. This expression becomes $dfrac{log(1+u)}u$, and it is standard from high school that the limit of this quotient as $uto 0$ is$;bigl(log(1+u)bigr)'_{u=0},:$ i.e. $:1$.
$endgroup$
It's because it can rewritten as
$$nlogfrac{n+1}n=nlogBigl(1+frac1nBigr)=frac{logBigl(1+dfrac1nBigr)}{dfrac1n}$$
Set $u=dfrac1n$. This expression becomes $dfrac{log(1+u)}u$, and it is standard from high school that the limit of this quotient as $uto 0$ is$;bigl(log(1+u)bigr)'_{u=0},:$ i.e. $:1$.
answered Dec 23 '18 at 22:18
BernardBernard
121k740116
121k740116
add a comment |
add a comment |
$begingroup$
You could even go beyond the limit. Write
$$a_n= n[log (n+1)-log(n)]=n logleft(frac{n+1}n right)=n logleft(1+frac{1}n right)$$
Now, remembering that for small $x$
$$log(1+x)=x-frac{x^2}{2}+frac{x^3}{3}+Oleft(x^4right)$$ make $x=frac 1 n$ to get
$$a_n=nleft(frac{1}{n}-frac{1}{2 n^2}+frac{1}{3
n^3}+Oleft(frac{1}{n^4}right)right)=1-frac{1}{2 n}+frac{1}{3
n^2}+Oleft(frac{1}{n^3}right)$$
Just try it for $n=10$. You will get
$$a_{10}=10 ,log left(frac{11}{10}right)approx 0.953102$$ while the above expansion would give
$$a_{10}simeq frac{143}{150}approx 0.953333$$
$endgroup$
$begingroup$
This time faster than @gimusi :)
$endgroup$
– roman
Dec 24 '18 at 11:38
1
$begingroup$
@roman. For once !! By the way, Merry Xmas
$endgroup$
– Claude Leibovici
Dec 24 '18 at 11:40
add a comment |
$begingroup$
You could even go beyond the limit. Write
$$a_n= n[log (n+1)-log(n)]=n logleft(frac{n+1}n right)=n logleft(1+frac{1}n right)$$
Now, remembering that for small $x$
$$log(1+x)=x-frac{x^2}{2}+frac{x^3}{3}+Oleft(x^4right)$$ make $x=frac 1 n$ to get
$$a_n=nleft(frac{1}{n}-frac{1}{2 n^2}+frac{1}{3
n^3}+Oleft(frac{1}{n^4}right)right)=1-frac{1}{2 n}+frac{1}{3
n^2}+Oleft(frac{1}{n^3}right)$$
Just try it for $n=10$. You will get
$$a_{10}=10 ,log left(frac{11}{10}right)approx 0.953102$$ while the above expansion would give
$$a_{10}simeq frac{143}{150}approx 0.953333$$
$endgroup$
$begingroup$
This time faster than @gimusi :)
$endgroup$
– roman
Dec 24 '18 at 11:38
1
$begingroup$
@roman. For once !! By the way, Merry Xmas
$endgroup$
– Claude Leibovici
Dec 24 '18 at 11:40
add a comment |
$begingroup$
You could even go beyond the limit. Write
$$a_n= n[log (n+1)-log(n)]=n logleft(frac{n+1}n right)=n logleft(1+frac{1}n right)$$
Now, remembering that for small $x$
$$log(1+x)=x-frac{x^2}{2}+frac{x^3}{3}+Oleft(x^4right)$$ make $x=frac 1 n$ to get
$$a_n=nleft(frac{1}{n}-frac{1}{2 n^2}+frac{1}{3
n^3}+Oleft(frac{1}{n^4}right)right)=1-frac{1}{2 n}+frac{1}{3
n^2}+Oleft(frac{1}{n^3}right)$$
Just try it for $n=10$. You will get
$$a_{10}=10 ,log left(frac{11}{10}right)approx 0.953102$$ while the above expansion would give
$$a_{10}simeq frac{143}{150}approx 0.953333$$
$endgroup$
You could even go beyond the limit. Write
$$a_n= n[log (n+1)-log(n)]=n logleft(frac{n+1}n right)=n logleft(1+frac{1}n right)$$
Now, remembering that for small $x$
$$log(1+x)=x-frac{x^2}{2}+frac{x^3}{3}+Oleft(x^4right)$$ make $x=frac 1 n$ to get
$$a_n=nleft(frac{1}{n}-frac{1}{2 n^2}+frac{1}{3
n^3}+Oleft(frac{1}{n^4}right)right)=1-frac{1}{2 n}+frac{1}{3
n^2}+Oleft(frac{1}{n^3}right)$$
Just try it for $n=10$. You will get
$$a_{10}=10 ,log left(frac{11}{10}right)approx 0.953102$$ while the above expansion would give
$$a_{10}simeq frac{143}{150}approx 0.953333$$
answered Dec 24 '18 at 11:37
Claude LeiboviciClaude Leibovici
122k1157134
122k1157134
$begingroup$
This time faster than @gimusi :)
$endgroup$
– roman
Dec 24 '18 at 11:38
1
$begingroup$
@roman. For once !! By the way, Merry Xmas
$endgroup$
– Claude Leibovici
Dec 24 '18 at 11:40
add a comment |
$begingroup$
This time faster than @gimusi :)
$endgroup$
– roman
Dec 24 '18 at 11:38
1
$begingroup$
@roman. For once !! By the way, Merry Xmas
$endgroup$
– Claude Leibovici
Dec 24 '18 at 11:40
$begingroup$
This time faster than @gimusi :)
$endgroup$
– roman
Dec 24 '18 at 11:38
$begingroup$
This time faster than @gimusi :)
$endgroup$
– roman
Dec 24 '18 at 11:38
1
1
$begingroup$
@roman. For once !! By the way, Merry Xmas
$endgroup$
– Claude Leibovici
Dec 24 '18 at 11:40
$begingroup$
@roman. For once !! By the way, Merry Xmas
$endgroup$
– Claude Leibovici
Dec 24 '18 at 11:40
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3050740%2fproof-that-lim-n-to-infty-n-log-n1-logn-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
You can only say that $lim a_n b_n = lim a_n cdot lim b_n$, if both limits exist. If one is $infty$, as in your example, the rule doesn't apply.
$endgroup$
– Viktor Glombik
Dec 23 '18 at 22:12
$begingroup$
You may think of $log n$ as $int_{1}^{infty}frac1x dx$.
$endgroup$
– Leila
Dec 24 '18 at 15:09