Proof that $lim_{n to infty} n[log (n+1)-log(n)]=1$












0












$begingroup$


Can someone explain me why $lim_{n to infty} n[log (n+1)-log(n)]=1$? Isn't that an indeterminate form? I mean, since $lim_{n to infty} n = infty$ and $lim_{n to infty} [log (n+1)-log(n)] = 0$ then $lim_{n to infty} a_n b_n=0 cdotinfty$?



I'm just starting with sequences, and I have no idea what to do.










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    You can only say that $lim a_n b_n = lim a_n cdot lim b_n$, if both limits exist. If one is $infty$, as in your example, the rule doesn't apply.
    $endgroup$
    – Viktor Glombik
    Dec 23 '18 at 22:12










  • $begingroup$
    You may think of $log n$ as $int_{1}^{infty}frac1x dx$.
    $endgroup$
    – Leila
    Dec 24 '18 at 15:09
















0












$begingroup$


Can someone explain me why $lim_{n to infty} n[log (n+1)-log(n)]=1$? Isn't that an indeterminate form? I mean, since $lim_{n to infty} n = infty$ and $lim_{n to infty} [log (n+1)-log(n)] = 0$ then $lim_{n to infty} a_n b_n=0 cdotinfty$?



I'm just starting with sequences, and I have no idea what to do.










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    You can only say that $lim a_n b_n = lim a_n cdot lim b_n$, if both limits exist. If one is $infty$, as in your example, the rule doesn't apply.
    $endgroup$
    – Viktor Glombik
    Dec 23 '18 at 22:12










  • $begingroup$
    You may think of $log n$ as $int_{1}^{infty}frac1x dx$.
    $endgroup$
    – Leila
    Dec 24 '18 at 15:09














0












0








0





$begingroup$


Can someone explain me why $lim_{n to infty} n[log (n+1)-log(n)]=1$? Isn't that an indeterminate form? I mean, since $lim_{n to infty} n = infty$ and $lim_{n to infty} [log (n+1)-log(n)] = 0$ then $lim_{n to infty} a_n b_n=0 cdotinfty$?



I'm just starting with sequences, and I have no idea what to do.










share|cite|improve this question









$endgroup$




Can someone explain me why $lim_{n to infty} n[log (n+1)-log(n)]=1$? Isn't that an indeterminate form? I mean, since $lim_{n to infty} n = infty$ and $lim_{n to infty} [log (n+1)-log(n)] = 0$ then $lim_{n to infty} a_n b_n=0 cdotinfty$?



I'm just starting with sequences, and I have no idea what to do.







calculus sequences-and-series limits






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Dec 23 '18 at 22:09









parishiltonparishilton

19310




19310








  • 1




    $begingroup$
    You can only say that $lim a_n b_n = lim a_n cdot lim b_n$, if both limits exist. If one is $infty$, as in your example, the rule doesn't apply.
    $endgroup$
    – Viktor Glombik
    Dec 23 '18 at 22:12










  • $begingroup$
    You may think of $log n$ as $int_{1}^{infty}frac1x dx$.
    $endgroup$
    – Leila
    Dec 24 '18 at 15:09














  • 1




    $begingroup$
    You can only say that $lim a_n b_n = lim a_n cdot lim b_n$, if both limits exist. If one is $infty$, as in your example, the rule doesn't apply.
    $endgroup$
    – Viktor Glombik
    Dec 23 '18 at 22:12










  • $begingroup$
    You may think of $log n$ as $int_{1}^{infty}frac1x dx$.
    $endgroup$
    – Leila
    Dec 24 '18 at 15:09








1




1




$begingroup$
You can only say that $lim a_n b_n = lim a_n cdot lim b_n$, if both limits exist. If one is $infty$, as in your example, the rule doesn't apply.
$endgroup$
– Viktor Glombik
Dec 23 '18 at 22:12




$begingroup$
You can only say that $lim a_n b_n = lim a_n cdot lim b_n$, if both limits exist. If one is $infty$, as in your example, the rule doesn't apply.
$endgroup$
– Viktor Glombik
Dec 23 '18 at 22:12












$begingroup$
You may think of $log n$ as $int_{1}^{infty}frac1x dx$.
$endgroup$
– Leila
Dec 24 '18 at 15:09




$begingroup$
You may think of $log n$ as $int_{1}^{infty}frac1x dx$.
$endgroup$
– Leila
Dec 24 '18 at 15:09










4 Answers
4






active

oldest

votes


















9












$begingroup$

As an alternative without L'Hopital, but rather using the very well known limit:
$$
begin{align}
lim_{ntoinfty}left(ncdotleft(ln(n+1) - ln nright)right) &= lim_{ntoinfty}left(ncdotlnleft(frac{n+1}{n}right)right) \
&= lim_{ntoinfty} lnleft(frac{n+1}{n}right)^n\
&= ln lim_{ntoinfty}left(1+frac{1}{n}right)^n\
&= ln e \
&= 1
end{align}
$$



I'm assuming you used $log x$ for $log_ex$ or simply $ln x$.






share|cite|improve this answer











$endgroup$





















    4












    $begingroup$

    If you already know the rule of L'HOSPITAL, the calculation could go as follows
    begin{align*}
    L
    := lim_{n to infty} n cdot log left( frac{n + 1}{n} right)
    = lim_{n to infty} frac{log left( frac{n + 1}{n} right)}{frac{1}{n}}
    end{align*}

    (here I am only using logarithm and fraction properties)



    Now this in an indeterminate form ''$frac{0}{0}$'', so we can apply the above mentioned rule by differentiating the numerator and the denominator:
    begin{align*}
    L
    = lim_{n to infty} frac{frac{n}{n + 1} left( frac{1}{n} -frac{n + 1}{n^2} right)}{- frac{1}{n^2}}
    = lim_{n to infty} frac{n}{n + 1}
    = 1.
    end{align*}

    This follows because
    begin{equation*}
    frac{d}{dx} frac{1}{x}
    = frac{d}{dx} x^{-1}
    = - x^{-2}
    end{equation*}

    and
    begin{equation*}
    frac{d}{dx} logleft(frac{x + 1}{x} right)
    = frac{d}{dx} log(x + 1) - frac{d}{dx} log(x)
    = frac{1}{x + 1} - frac{1}{x}
    = frac{x}{x + 1} left( frac{1}{x} -frac{x + 1}{x^2} right)
    end{equation*}






    share|cite|improve this answer









    $endgroup$





















      4












      $begingroup$

      It's because it can rewritten as
      $$nlogfrac{n+1}n=nlogBigl(1+frac1nBigr)=frac{logBigl(1+dfrac1nBigr)}{dfrac1n}$$
      Set $u=dfrac1n$. This expression becomes $dfrac{log(1+u)}u$, and it is standard from high school that the limit of this quotient as $uto 0$ is$;bigl(log(1+u)bigr)'_{u=0},:$ i.e. $:1$.






      share|cite|improve this answer









      $endgroup$





















        2












        $begingroup$

        You could even go beyond the limit. Write
        $$a_n= n[log (n+1)-log(n)]=n logleft(frac{n+1}n right)=n logleft(1+frac{1}n right)$$
        Now, remembering that for small $x$
        $$log(1+x)=x-frac{x^2}{2}+frac{x^3}{3}+Oleft(x^4right)$$ make $x=frac 1 n$ to get
        $$a_n=nleft(frac{1}{n}-frac{1}{2 n^2}+frac{1}{3
        n^3}+Oleft(frac{1}{n^4}right)right)=1-frac{1}{2 n}+frac{1}{3
        n^2}+Oleft(frac{1}{n^3}right)$$



        Just try it for $n=10$. You will get
        $$a_{10}=10 ,log left(frac{11}{10}right)approx 0.953102$$ while the above expansion would give
        $$a_{10}simeq frac{143}{150}approx 0.953333$$






        share|cite|improve this answer









        $endgroup$













        • $begingroup$
          This time faster than @gimusi :)
          $endgroup$
          – roman
          Dec 24 '18 at 11:38








        • 1




          $begingroup$
          @roman. For once !! By the way, Merry Xmas
          $endgroup$
          – Claude Leibovici
          Dec 24 '18 at 11:40











        Your Answer





        StackExchange.ifUsing("editor", function () {
        return StackExchange.using("mathjaxEditing", function () {
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        });
        });
        }, "mathjax-editing");

        StackExchange.ready(function() {
        var channelOptions = {
        tags: "".split(" "),
        id: "69"
        };
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function() {
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled) {
        StackExchange.using("snippets", function() {
        createEditor();
        });
        }
        else {
        createEditor();
        }
        });

        function createEditor() {
        StackExchange.prepareEditor({
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader: {
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        },
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        });


        }
        });














        draft saved

        draft discarded


















        StackExchange.ready(
        function () {
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3050740%2fproof-that-lim-n-to-infty-n-log-n1-logn-1%23new-answer', 'question_page');
        }
        );

        Post as a guest















        Required, but never shown

























        4 Answers
        4






        active

        oldest

        votes








        4 Answers
        4






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        9












        $begingroup$

        As an alternative without L'Hopital, but rather using the very well known limit:
        $$
        begin{align}
        lim_{ntoinfty}left(ncdotleft(ln(n+1) - ln nright)right) &= lim_{ntoinfty}left(ncdotlnleft(frac{n+1}{n}right)right) \
        &= lim_{ntoinfty} lnleft(frac{n+1}{n}right)^n\
        &= ln lim_{ntoinfty}left(1+frac{1}{n}right)^n\
        &= ln e \
        &= 1
        end{align}
        $$



        I'm assuming you used $log x$ for $log_ex$ or simply $ln x$.






        share|cite|improve this answer











        $endgroup$


















          9












          $begingroup$

          As an alternative without L'Hopital, but rather using the very well known limit:
          $$
          begin{align}
          lim_{ntoinfty}left(ncdotleft(ln(n+1) - ln nright)right) &= lim_{ntoinfty}left(ncdotlnleft(frac{n+1}{n}right)right) \
          &= lim_{ntoinfty} lnleft(frac{n+1}{n}right)^n\
          &= ln lim_{ntoinfty}left(1+frac{1}{n}right)^n\
          &= ln e \
          &= 1
          end{align}
          $$



          I'm assuming you used $log x$ for $log_ex$ or simply $ln x$.






          share|cite|improve this answer











          $endgroup$
















            9












            9








            9





            $begingroup$

            As an alternative without L'Hopital, but rather using the very well known limit:
            $$
            begin{align}
            lim_{ntoinfty}left(ncdotleft(ln(n+1) - ln nright)right) &= lim_{ntoinfty}left(ncdotlnleft(frac{n+1}{n}right)right) \
            &= lim_{ntoinfty} lnleft(frac{n+1}{n}right)^n\
            &= ln lim_{ntoinfty}left(1+frac{1}{n}right)^n\
            &= ln e \
            &= 1
            end{align}
            $$



            I'm assuming you used $log x$ for $log_ex$ or simply $ln x$.






            share|cite|improve this answer











            $endgroup$



            As an alternative without L'Hopital, but rather using the very well known limit:
            $$
            begin{align}
            lim_{ntoinfty}left(ncdotleft(ln(n+1) - ln nright)right) &= lim_{ntoinfty}left(ncdotlnleft(frac{n+1}{n}right)right) \
            &= lim_{ntoinfty} lnleft(frac{n+1}{n}right)^n\
            &= ln lim_{ntoinfty}left(1+frac{1}{n}right)^n\
            &= ln e \
            &= 1
            end{align}
            $$



            I'm assuming you used $log x$ for $log_ex$ or simply $ln x$.







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited Dec 23 '18 at 22:29









            Viktor Glombik

            9381527




            9381527










            answered Dec 23 '18 at 22:19









            romanroman

            2,28421224




            2,28421224























                4












                $begingroup$

                If you already know the rule of L'HOSPITAL, the calculation could go as follows
                begin{align*}
                L
                := lim_{n to infty} n cdot log left( frac{n + 1}{n} right)
                = lim_{n to infty} frac{log left( frac{n + 1}{n} right)}{frac{1}{n}}
                end{align*}

                (here I am only using logarithm and fraction properties)



                Now this in an indeterminate form ''$frac{0}{0}$'', so we can apply the above mentioned rule by differentiating the numerator and the denominator:
                begin{align*}
                L
                = lim_{n to infty} frac{frac{n}{n + 1} left( frac{1}{n} -frac{n + 1}{n^2} right)}{- frac{1}{n^2}}
                = lim_{n to infty} frac{n}{n + 1}
                = 1.
                end{align*}

                This follows because
                begin{equation*}
                frac{d}{dx} frac{1}{x}
                = frac{d}{dx} x^{-1}
                = - x^{-2}
                end{equation*}

                and
                begin{equation*}
                frac{d}{dx} logleft(frac{x + 1}{x} right)
                = frac{d}{dx} log(x + 1) - frac{d}{dx} log(x)
                = frac{1}{x + 1} - frac{1}{x}
                = frac{x}{x + 1} left( frac{1}{x} -frac{x + 1}{x^2} right)
                end{equation*}






                share|cite|improve this answer









                $endgroup$


















                  4












                  $begingroup$

                  If you already know the rule of L'HOSPITAL, the calculation could go as follows
                  begin{align*}
                  L
                  := lim_{n to infty} n cdot log left( frac{n + 1}{n} right)
                  = lim_{n to infty} frac{log left( frac{n + 1}{n} right)}{frac{1}{n}}
                  end{align*}

                  (here I am only using logarithm and fraction properties)



                  Now this in an indeterminate form ''$frac{0}{0}$'', so we can apply the above mentioned rule by differentiating the numerator and the denominator:
                  begin{align*}
                  L
                  = lim_{n to infty} frac{frac{n}{n + 1} left( frac{1}{n} -frac{n + 1}{n^2} right)}{- frac{1}{n^2}}
                  = lim_{n to infty} frac{n}{n + 1}
                  = 1.
                  end{align*}

                  This follows because
                  begin{equation*}
                  frac{d}{dx} frac{1}{x}
                  = frac{d}{dx} x^{-1}
                  = - x^{-2}
                  end{equation*}

                  and
                  begin{equation*}
                  frac{d}{dx} logleft(frac{x + 1}{x} right)
                  = frac{d}{dx} log(x + 1) - frac{d}{dx} log(x)
                  = frac{1}{x + 1} - frac{1}{x}
                  = frac{x}{x + 1} left( frac{1}{x} -frac{x + 1}{x^2} right)
                  end{equation*}






                  share|cite|improve this answer









                  $endgroup$
















                    4












                    4








                    4





                    $begingroup$

                    If you already know the rule of L'HOSPITAL, the calculation could go as follows
                    begin{align*}
                    L
                    := lim_{n to infty} n cdot log left( frac{n + 1}{n} right)
                    = lim_{n to infty} frac{log left( frac{n + 1}{n} right)}{frac{1}{n}}
                    end{align*}

                    (here I am only using logarithm and fraction properties)



                    Now this in an indeterminate form ''$frac{0}{0}$'', so we can apply the above mentioned rule by differentiating the numerator and the denominator:
                    begin{align*}
                    L
                    = lim_{n to infty} frac{frac{n}{n + 1} left( frac{1}{n} -frac{n + 1}{n^2} right)}{- frac{1}{n^2}}
                    = lim_{n to infty} frac{n}{n + 1}
                    = 1.
                    end{align*}

                    This follows because
                    begin{equation*}
                    frac{d}{dx} frac{1}{x}
                    = frac{d}{dx} x^{-1}
                    = - x^{-2}
                    end{equation*}

                    and
                    begin{equation*}
                    frac{d}{dx} logleft(frac{x + 1}{x} right)
                    = frac{d}{dx} log(x + 1) - frac{d}{dx} log(x)
                    = frac{1}{x + 1} - frac{1}{x}
                    = frac{x}{x + 1} left( frac{1}{x} -frac{x + 1}{x^2} right)
                    end{equation*}






                    share|cite|improve this answer









                    $endgroup$



                    If you already know the rule of L'HOSPITAL, the calculation could go as follows
                    begin{align*}
                    L
                    := lim_{n to infty} n cdot log left( frac{n + 1}{n} right)
                    = lim_{n to infty} frac{log left( frac{n + 1}{n} right)}{frac{1}{n}}
                    end{align*}

                    (here I am only using logarithm and fraction properties)



                    Now this in an indeterminate form ''$frac{0}{0}$'', so we can apply the above mentioned rule by differentiating the numerator and the denominator:
                    begin{align*}
                    L
                    = lim_{n to infty} frac{frac{n}{n + 1} left( frac{1}{n} -frac{n + 1}{n^2} right)}{- frac{1}{n^2}}
                    = lim_{n to infty} frac{n}{n + 1}
                    = 1.
                    end{align*}

                    This follows because
                    begin{equation*}
                    frac{d}{dx} frac{1}{x}
                    = frac{d}{dx} x^{-1}
                    = - x^{-2}
                    end{equation*}

                    and
                    begin{equation*}
                    frac{d}{dx} logleft(frac{x + 1}{x} right)
                    = frac{d}{dx} log(x + 1) - frac{d}{dx} log(x)
                    = frac{1}{x + 1} - frac{1}{x}
                    = frac{x}{x + 1} left( frac{1}{x} -frac{x + 1}{x^2} right)
                    end{equation*}







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Dec 23 '18 at 22:17









                    Viktor GlombikViktor Glombik

                    9381527




                    9381527























                        4












                        $begingroup$

                        It's because it can rewritten as
                        $$nlogfrac{n+1}n=nlogBigl(1+frac1nBigr)=frac{logBigl(1+dfrac1nBigr)}{dfrac1n}$$
                        Set $u=dfrac1n$. This expression becomes $dfrac{log(1+u)}u$, and it is standard from high school that the limit of this quotient as $uto 0$ is$;bigl(log(1+u)bigr)'_{u=0},:$ i.e. $:1$.






                        share|cite|improve this answer









                        $endgroup$


















                          4












                          $begingroup$

                          It's because it can rewritten as
                          $$nlogfrac{n+1}n=nlogBigl(1+frac1nBigr)=frac{logBigl(1+dfrac1nBigr)}{dfrac1n}$$
                          Set $u=dfrac1n$. This expression becomes $dfrac{log(1+u)}u$, and it is standard from high school that the limit of this quotient as $uto 0$ is$;bigl(log(1+u)bigr)'_{u=0},:$ i.e. $:1$.






                          share|cite|improve this answer









                          $endgroup$
















                            4












                            4








                            4





                            $begingroup$

                            It's because it can rewritten as
                            $$nlogfrac{n+1}n=nlogBigl(1+frac1nBigr)=frac{logBigl(1+dfrac1nBigr)}{dfrac1n}$$
                            Set $u=dfrac1n$. This expression becomes $dfrac{log(1+u)}u$, and it is standard from high school that the limit of this quotient as $uto 0$ is$;bigl(log(1+u)bigr)'_{u=0},:$ i.e. $:1$.






                            share|cite|improve this answer









                            $endgroup$



                            It's because it can rewritten as
                            $$nlogfrac{n+1}n=nlogBigl(1+frac1nBigr)=frac{logBigl(1+dfrac1nBigr)}{dfrac1n}$$
                            Set $u=dfrac1n$. This expression becomes $dfrac{log(1+u)}u$, and it is standard from high school that the limit of this quotient as $uto 0$ is$;bigl(log(1+u)bigr)'_{u=0},:$ i.e. $:1$.







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered Dec 23 '18 at 22:18









                            BernardBernard

                            121k740116




                            121k740116























                                2












                                $begingroup$

                                You could even go beyond the limit. Write
                                $$a_n= n[log (n+1)-log(n)]=n logleft(frac{n+1}n right)=n logleft(1+frac{1}n right)$$
                                Now, remembering that for small $x$
                                $$log(1+x)=x-frac{x^2}{2}+frac{x^3}{3}+Oleft(x^4right)$$ make $x=frac 1 n$ to get
                                $$a_n=nleft(frac{1}{n}-frac{1}{2 n^2}+frac{1}{3
                                n^3}+Oleft(frac{1}{n^4}right)right)=1-frac{1}{2 n}+frac{1}{3
                                n^2}+Oleft(frac{1}{n^3}right)$$



                                Just try it for $n=10$. You will get
                                $$a_{10}=10 ,log left(frac{11}{10}right)approx 0.953102$$ while the above expansion would give
                                $$a_{10}simeq frac{143}{150}approx 0.953333$$






                                share|cite|improve this answer









                                $endgroup$













                                • $begingroup$
                                  This time faster than @gimusi :)
                                  $endgroup$
                                  – roman
                                  Dec 24 '18 at 11:38








                                • 1




                                  $begingroup$
                                  @roman. For once !! By the way, Merry Xmas
                                  $endgroup$
                                  – Claude Leibovici
                                  Dec 24 '18 at 11:40
















                                2












                                $begingroup$

                                You could even go beyond the limit. Write
                                $$a_n= n[log (n+1)-log(n)]=n logleft(frac{n+1}n right)=n logleft(1+frac{1}n right)$$
                                Now, remembering that for small $x$
                                $$log(1+x)=x-frac{x^2}{2}+frac{x^3}{3}+Oleft(x^4right)$$ make $x=frac 1 n$ to get
                                $$a_n=nleft(frac{1}{n}-frac{1}{2 n^2}+frac{1}{3
                                n^3}+Oleft(frac{1}{n^4}right)right)=1-frac{1}{2 n}+frac{1}{3
                                n^2}+Oleft(frac{1}{n^3}right)$$



                                Just try it for $n=10$. You will get
                                $$a_{10}=10 ,log left(frac{11}{10}right)approx 0.953102$$ while the above expansion would give
                                $$a_{10}simeq frac{143}{150}approx 0.953333$$






                                share|cite|improve this answer









                                $endgroup$













                                • $begingroup$
                                  This time faster than @gimusi :)
                                  $endgroup$
                                  – roman
                                  Dec 24 '18 at 11:38








                                • 1




                                  $begingroup$
                                  @roman. For once !! By the way, Merry Xmas
                                  $endgroup$
                                  – Claude Leibovici
                                  Dec 24 '18 at 11:40














                                2












                                2








                                2





                                $begingroup$

                                You could even go beyond the limit. Write
                                $$a_n= n[log (n+1)-log(n)]=n logleft(frac{n+1}n right)=n logleft(1+frac{1}n right)$$
                                Now, remembering that for small $x$
                                $$log(1+x)=x-frac{x^2}{2}+frac{x^3}{3}+Oleft(x^4right)$$ make $x=frac 1 n$ to get
                                $$a_n=nleft(frac{1}{n}-frac{1}{2 n^2}+frac{1}{3
                                n^3}+Oleft(frac{1}{n^4}right)right)=1-frac{1}{2 n}+frac{1}{3
                                n^2}+Oleft(frac{1}{n^3}right)$$



                                Just try it for $n=10$. You will get
                                $$a_{10}=10 ,log left(frac{11}{10}right)approx 0.953102$$ while the above expansion would give
                                $$a_{10}simeq frac{143}{150}approx 0.953333$$






                                share|cite|improve this answer









                                $endgroup$



                                You could even go beyond the limit. Write
                                $$a_n= n[log (n+1)-log(n)]=n logleft(frac{n+1}n right)=n logleft(1+frac{1}n right)$$
                                Now, remembering that for small $x$
                                $$log(1+x)=x-frac{x^2}{2}+frac{x^3}{3}+Oleft(x^4right)$$ make $x=frac 1 n$ to get
                                $$a_n=nleft(frac{1}{n}-frac{1}{2 n^2}+frac{1}{3
                                n^3}+Oleft(frac{1}{n^4}right)right)=1-frac{1}{2 n}+frac{1}{3
                                n^2}+Oleft(frac{1}{n^3}right)$$



                                Just try it for $n=10$. You will get
                                $$a_{10}=10 ,log left(frac{11}{10}right)approx 0.953102$$ while the above expansion would give
                                $$a_{10}simeq frac{143}{150}approx 0.953333$$







                                share|cite|improve this answer












                                share|cite|improve this answer



                                share|cite|improve this answer










                                answered Dec 24 '18 at 11:37









                                Claude LeiboviciClaude Leibovici

                                122k1157134




                                122k1157134












                                • $begingroup$
                                  This time faster than @gimusi :)
                                  $endgroup$
                                  – roman
                                  Dec 24 '18 at 11:38








                                • 1




                                  $begingroup$
                                  @roman. For once !! By the way, Merry Xmas
                                  $endgroup$
                                  – Claude Leibovici
                                  Dec 24 '18 at 11:40


















                                • $begingroup$
                                  This time faster than @gimusi :)
                                  $endgroup$
                                  – roman
                                  Dec 24 '18 at 11:38








                                • 1




                                  $begingroup$
                                  @roman. For once !! By the way, Merry Xmas
                                  $endgroup$
                                  – Claude Leibovici
                                  Dec 24 '18 at 11:40
















                                $begingroup$
                                This time faster than @gimusi :)
                                $endgroup$
                                – roman
                                Dec 24 '18 at 11:38






                                $begingroup$
                                This time faster than @gimusi :)
                                $endgroup$
                                – roman
                                Dec 24 '18 at 11:38






                                1




                                1




                                $begingroup$
                                @roman. For once !! By the way, Merry Xmas
                                $endgroup$
                                – Claude Leibovici
                                Dec 24 '18 at 11:40




                                $begingroup$
                                @roman. For once !! By the way, Merry Xmas
                                $endgroup$
                                – Claude Leibovici
                                Dec 24 '18 at 11:40


















                                draft saved

                                draft discarded




















































                                Thanks for contributing an answer to Mathematics Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid



                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.


                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function () {
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3050740%2fproof-that-lim-n-to-infty-n-log-n1-logn-1%23new-answer', 'question_page');
                                }
                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                Ellipse (mathématiques)

                                Quarter-circle Tiles

                                Mont Emei