Inverse Laplace Transform by Complex Inversion Theorem












1












$begingroup$


The questions asks to find $F(t) = L^{-1}{s^{-1/2}e^{-1/s}}$



I've made a branch cut along the negative real axis and produced a contour similar to this:



Integration along segments BE, LA go to 0 and since $f(s)$ has no singularities within the contour, the entire integration around it is 0 and we can find $F(t)$ as the integration along AB. So I have:



F(t) = $int_{AB}$ = - ($int_{EH}$ + $int_{HJK}$ + $int_{KL}$)



EH: Take $s=xe^{ipi}$



Then $$int_{EH} =int_{-R}^{-epsilon} frac{e^{st-1/s}}{sqrt s} ds =int_{R}^{epsilon} frac{ie^{1/x-xt}}{sqrt x} dx$$



Similarly for KL: Take $s=xe^{-ipi}$



Then $$int_{KL} =int_{-epsilon}^{-R} frac{e^{st-1/s}}{sqrt s} ds =int_{epsilon}^{R} frac{ie^{1/x-xt}}{sqrt x} dx$$



HJK: Take $s=epsilon e^{itheta}$



Then $$int_{HJK} =int_{pi}^{-pi} frac{e^{st-1/s}}{sqrt s} ds =int_{pi}^{-pi} frac{e^{epsilon t e^{itheta}-1/epsilon e^{itheta}}}{sqrt epsilon e^{itheta /2}} isqrt epsilon e^{itheta /2} ds =int_{pi}^{-pi} sqrt{epsilon} ie^{epsilon t e^{itheta} - (epsilon te^{itheta})^{-1}+ itheta/2} dx$$



Now, assuming these are correct (which might not be wise):



$$F(t) = -frac{1}{2pi i}lim_{Rto infty, epsilon to 0} int_{R}^{epsilon} frac{ie^{1/x-xt}}{sqrt x} dx + int_{epsilon}^{R} frac{ie^{1/x-xt}}{sqrt x} dx + int_{pi}^{-pi} sqrt{epsilon} ie^{epsilon t e^{itheta} - (epsilon te^{itheta})^{-1}+ itheta/2} dx$$



$$therefore F(t) = -frac{1}{2pi}lim_{Rto infty, epsilon to 0} int_{pi}^{-pi} sqrt{epsilon} e^{epsilon t e^{itheta} - (epsilon te^{itheta})^{-1}+ itheta/2} dx$$



I'm stuck here. Instructions were to let $epsilon to t^{-1/2}$ rather than 0 but I don't understand why and I can't evaluate this integral. I know the answer is $frac{cos(2sqrt t)}{sqrt{pi t}}$ from using a different method. Also how should I show the branch points analytically?










share|cite|improve this question











$endgroup$












  • $begingroup$
    The Maple code $$ with(inttrans): invlaplace(exp(-1/s)/s, s, t); $$ outputs $${{rm J}left(0,,2,sqrt {t}right)} .$$
    $endgroup$
    – user64494
    Oct 27 '13 at 7:48
















1












$begingroup$


The questions asks to find $F(t) = L^{-1}{s^{-1/2}e^{-1/s}}$



I've made a branch cut along the negative real axis and produced a contour similar to this:



Integration along segments BE, LA go to 0 and since $f(s)$ has no singularities within the contour, the entire integration around it is 0 and we can find $F(t)$ as the integration along AB. So I have:



F(t) = $int_{AB}$ = - ($int_{EH}$ + $int_{HJK}$ + $int_{KL}$)



EH: Take $s=xe^{ipi}$



Then $$int_{EH} =int_{-R}^{-epsilon} frac{e^{st-1/s}}{sqrt s} ds =int_{R}^{epsilon} frac{ie^{1/x-xt}}{sqrt x} dx$$



Similarly for KL: Take $s=xe^{-ipi}$



Then $$int_{KL} =int_{-epsilon}^{-R} frac{e^{st-1/s}}{sqrt s} ds =int_{epsilon}^{R} frac{ie^{1/x-xt}}{sqrt x} dx$$



HJK: Take $s=epsilon e^{itheta}$



Then $$int_{HJK} =int_{pi}^{-pi} frac{e^{st-1/s}}{sqrt s} ds =int_{pi}^{-pi} frac{e^{epsilon t e^{itheta}-1/epsilon e^{itheta}}}{sqrt epsilon e^{itheta /2}} isqrt epsilon e^{itheta /2} ds =int_{pi}^{-pi} sqrt{epsilon} ie^{epsilon t e^{itheta} - (epsilon te^{itheta})^{-1}+ itheta/2} dx$$



Now, assuming these are correct (which might not be wise):



$$F(t) = -frac{1}{2pi i}lim_{Rto infty, epsilon to 0} int_{R}^{epsilon} frac{ie^{1/x-xt}}{sqrt x} dx + int_{epsilon}^{R} frac{ie^{1/x-xt}}{sqrt x} dx + int_{pi}^{-pi} sqrt{epsilon} ie^{epsilon t e^{itheta} - (epsilon te^{itheta})^{-1}+ itheta/2} dx$$



$$therefore F(t) = -frac{1}{2pi}lim_{Rto infty, epsilon to 0} int_{pi}^{-pi} sqrt{epsilon} e^{epsilon t e^{itheta} - (epsilon te^{itheta})^{-1}+ itheta/2} dx$$



I'm stuck here. Instructions were to let $epsilon to t^{-1/2}$ rather than 0 but I don't understand why and I can't evaluate this integral. I know the answer is $frac{cos(2sqrt t)}{sqrt{pi t}}$ from using a different method. Also how should I show the branch points analytically?










share|cite|improve this question











$endgroup$












  • $begingroup$
    The Maple code $$ with(inttrans): invlaplace(exp(-1/s)/s, s, t); $$ outputs $${{rm J}left(0,,2,sqrt {t}right)} .$$
    $endgroup$
    – user64494
    Oct 27 '13 at 7:48














1












1








1





$begingroup$


The questions asks to find $F(t) = L^{-1}{s^{-1/2}e^{-1/s}}$



I've made a branch cut along the negative real axis and produced a contour similar to this:



Integration along segments BE, LA go to 0 and since $f(s)$ has no singularities within the contour, the entire integration around it is 0 and we can find $F(t)$ as the integration along AB. So I have:



F(t) = $int_{AB}$ = - ($int_{EH}$ + $int_{HJK}$ + $int_{KL}$)



EH: Take $s=xe^{ipi}$



Then $$int_{EH} =int_{-R}^{-epsilon} frac{e^{st-1/s}}{sqrt s} ds =int_{R}^{epsilon} frac{ie^{1/x-xt}}{sqrt x} dx$$



Similarly for KL: Take $s=xe^{-ipi}$



Then $$int_{KL} =int_{-epsilon}^{-R} frac{e^{st-1/s}}{sqrt s} ds =int_{epsilon}^{R} frac{ie^{1/x-xt}}{sqrt x} dx$$



HJK: Take $s=epsilon e^{itheta}$



Then $$int_{HJK} =int_{pi}^{-pi} frac{e^{st-1/s}}{sqrt s} ds =int_{pi}^{-pi} frac{e^{epsilon t e^{itheta}-1/epsilon e^{itheta}}}{sqrt epsilon e^{itheta /2}} isqrt epsilon e^{itheta /2} ds =int_{pi}^{-pi} sqrt{epsilon} ie^{epsilon t e^{itheta} - (epsilon te^{itheta})^{-1}+ itheta/2} dx$$



Now, assuming these are correct (which might not be wise):



$$F(t) = -frac{1}{2pi i}lim_{Rto infty, epsilon to 0} int_{R}^{epsilon} frac{ie^{1/x-xt}}{sqrt x} dx + int_{epsilon}^{R} frac{ie^{1/x-xt}}{sqrt x} dx + int_{pi}^{-pi} sqrt{epsilon} ie^{epsilon t e^{itheta} - (epsilon te^{itheta})^{-1}+ itheta/2} dx$$



$$therefore F(t) = -frac{1}{2pi}lim_{Rto infty, epsilon to 0} int_{pi}^{-pi} sqrt{epsilon} e^{epsilon t e^{itheta} - (epsilon te^{itheta})^{-1}+ itheta/2} dx$$



I'm stuck here. Instructions were to let $epsilon to t^{-1/2}$ rather than 0 but I don't understand why and I can't evaluate this integral. I know the answer is $frac{cos(2sqrt t)}{sqrt{pi t}}$ from using a different method. Also how should I show the branch points analytically?










share|cite|improve this question











$endgroup$




The questions asks to find $F(t) = L^{-1}{s^{-1/2}e^{-1/s}}$



I've made a branch cut along the negative real axis and produced a contour similar to this:



Integration along segments BE, LA go to 0 and since $f(s)$ has no singularities within the contour, the entire integration around it is 0 and we can find $F(t)$ as the integration along AB. So I have:



F(t) = $int_{AB}$ = - ($int_{EH}$ + $int_{HJK}$ + $int_{KL}$)



EH: Take $s=xe^{ipi}$



Then $$int_{EH} =int_{-R}^{-epsilon} frac{e^{st-1/s}}{sqrt s} ds =int_{R}^{epsilon} frac{ie^{1/x-xt}}{sqrt x} dx$$



Similarly for KL: Take $s=xe^{-ipi}$



Then $$int_{KL} =int_{-epsilon}^{-R} frac{e^{st-1/s}}{sqrt s} ds =int_{epsilon}^{R} frac{ie^{1/x-xt}}{sqrt x} dx$$



HJK: Take $s=epsilon e^{itheta}$



Then $$int_{HJK} =int_{pi}^{-pi} frac{e^{st-1/s}}{sqrt s} ds =int_{pi}^{-pi} frac{e^{epsilon t e^{itheta}-1/epsilon e^{itheta}}}{sqrt epsilon e^{itheta /2}} isqrt epsilon e^{itheta /2} ds =int_{pi}^{-pi} sqrt{epsilon} ie^{epsilon t e^{itheta} - (epsilon te^{itheta})^{-1}+ itheta/2} dx$$



Now, assuming these are correct (which might not be wise):



$$F(t) = -frac{1}{2pi i}lim_{Rto infty, epsilon to 0} int_{R}^{epsilon} frac{ie^{1/x-xt}}{sqrt x} dx + int_{epsilon}^{R} frac{ie^{1/x-xt}}{sqrt x} dx + int_{pi}^{-pi} sqrt{epsilon} ie^{epsilon t e^{itheta} - (epsilon te^{itheta})^{-1}+ itheta/2} dx$$



$$therefore F(t) = -frac{1}{2pi}lim_{Rto infty, epsilon to 0} int_{pi}^{-pi} sqrt{epsilon} e^{epsilon t e^{itheta} - (epsilon te^{itheta})^{-1}+ itheta/2} dx$$



I'm stuck here. Instructions were to let $epsilon to t^{-1/2}$ rather than 0 but I don't understand why and I can't evaluate this integral. I know the answer is $frac{cos(2sqrt t)}{sqrt{pi t}}$ from using a different method. Also how should I show the branch points analytically?







integration complex-analysis






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 23 '18 at 21:18









Glorfindel

3,41981830




3,41981830










asked Oct 27 '13 at 7:43









GuestGuest

62




62












  • $begingroup$
    The Maple code $$ with(inttrans): invlaplace(exp(-1/s)/s, s, t); $$ outputs $${{rm J}left(0,,2,sqrt {t}right)} .$$
    $endgroup$
    – user64494
    Oct 27 '13 at 7:48


















  • $begingroup$
    The Maple code $$ with(inttrans): invlaplace(exp(-1/s)/s, s, t); $$ outputs $${{rm J}left(0,,2,sqrt {t}right)} .$$
    $endgroup$
    – user64494
    Oct 27 '13 at 7:48
















$begingroup$
The Maple code $$ with(inttrans): invlaplace(exp(-1/s)/s, s, t); $$ outputs $${{rm J}left(0,,2,sqrt {t}right)} .$$
$endgroup$
– user64494
Oct 27 '13 at 7:48




$begingroup$
The Maple code $$ with(inttrans): invlaplace(exp(-1/s)/s, s, t); $$ outputs $${{rm J}left(0,,2,sqrt {t}right)} .$$
$endgroup$
– user64494
Oct 27 '13 at 7:48










0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f541218%2finverse-laplace-transform-by-complex-inversion-theorem%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f541218%2finverse-laplace-transform-by-complex-inversion-theorem%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Ellipse (mathématiques)

Quarter-circle Tiles

Mont Emei