Inverse Laplace Transform by Complex Inversion Theorem
$begingroup$
The questions asks to find $F(t) = L^{-1}{s^{-1/2}e^{-1/s}}$
I've made a branch cut along the negative real axis and produced a contour similar to this:
Integration along segments BE, LA go to 0 and since $f(s)$ has no singularities within the contour, the entire integration around it is 0 and we can find $F(t)$ as the integration along AB. So I have:
F(t) = $int_{AB}$ = - ($int_{EH}$ + $int_{HJK}$ + $int_{KL}$)
EH: Take $s=xe^{ipi}$
Then $$int_{EH} =int_{-R}^{-epsilon} frac{e^{st-1/s}}{sqrt s} ds =int_{R}^{epsilon} frac{ie^{1/x-xt}}{sqrt x} dx$$
Similarly for KL: Take $s=xe^{-ipi}$
Then $$int_{KL} =int_{-epsilon}^{-R} frac{e^{st-1/s}}{sqrt s} ds =int_{epsilon}^{R} frac{ie^{1/x-xt}}{sqrt x} dx$$
HJK: Take $s=epsilon e^{itheta}$
Then $$int_{HJK} =int_{pi}^{-pi} frac{e^{st-1/s}}{sqrt s} ds =int_{pi}^{-pi} frac{e^{epsilon t e^{itheta}-1/epsilon e^{itheta}}}{sqrt epsilon e^{itheta /2}} isqrt epsilon e^{itheta /2} ds =int_{pi}^{-pi} sqrt{epsilon} ie^{epsilon t e^{itheta} - (epsilon te^{itheta})^{-1}+ itheta/2} dx$$
Now, assuming these are correct (which might not be wise):
$$F(t) = -frac{1}{2pi i}lim_{Rto infty, epsilon to 0} int_{R}^{epsilon} frac{ie^{1/x-xt}}{sqrt x} dx + int_{epsilon}^{R} frac{ie^{1/x-xt}}{sqrt x} dx + int_{pi}^{-pi} sqrt{epsilon} ie^{epsilon t e^{itheta} - (epsilon te^{itheta})^{-1}+ itheta/2} dx$$
$$therefore F(t) = -frac{1}{2pi}lim_{Rto infty, epsilon to 0} int_{pi}^{-pi} sqrt{epsilon} e^{epsilon t e^{itheta} - (epsilon te^{itheta})^{-1}+ itheta/2} dx$$
I'm stuck here. Instructions were to let $epsilon to t^{-1/2}$ rather than 0 but I don't understand why and I can't evaluate this integral. I know the answer is $frac{cos(2sqrt t)}{sqrt{pi t}}$ from using a different method. Also how should I show the branch points analytically?
integration complex-analysis
$endgroup$
add a comment |
$begingroup$
The questions asks to find $F(t) = L^{-1}{s^{-1/2}e^{-1/s}}$
I've made a branch cut along the negative real axis and produced a contour similar to this:
Integration along segments BE, LA go to 0 and since $f(s)$ has no singularities within the contour, the entire integration around it is 0 and we can find $F(t)$ as the integration along AB. So I have:
F(t) = $int_{AB}$ = - ($int_{EH}$ + $int_{HJK}$ + $int_{KL}$)
EH: Take $s=xe^{ipi}$
Then $$int_{EH} =int_{-R}^{-epsilon} frac{e^{st-1/s}}{sqrt s} ds =int_{R}^{epsilon} frac{ie^{1/x-xt}}{sqrt x} dx$$
Similarly for KL: Take $s=xe^{-ipi}$
Then $$int_{KL} =int_{-epsilon}^{-R} frac{e^{st-1/s}}{sqrt s} ds =int_{epsilon}^{R} frac{ie^{1/x-xt}}{sqrt x} dx$$
HJK: Take $s=epsilon e^{itheta}$
Then $$int_{HJK} =int_{pi}^{-pi} frac{e^{st-1/s}}{sqrt s} ds =int_{pi}^{-pi} frac{e^{epsilon t e^{itheta}-1/epsilon e^{itheta}}}{sqrt epsilon e^{itheta /2}} isqrt epsilon e^{itheta /2} ds =int_{pi}^{-pi} sqrt{epsilon} ie^{epsilon t e^{itheta} - (epsilon te^{itheta})^{-1}+ itheta/2} dx$$
Now, assuming these are correct (which might not be wise):
$$F(t) = -frac{1}{2pi i}lim_{Rto infty, epsilon to 0} int_{R}^{epsilon} frac{ie^{1/x-xt}}{sqrt x} dx + int_{epsilon}^{R} frac{ie^{1/x-xt}}{sqrt x} dx + int_{pi}^{-pi} sqrt{epsilon} ie^{epsilon t e^{itheta} - (epsilon te^{itheta})^{-1}+ itheta/2} dx$$
$$therefore F(t) = -frac{1}{2pi}lim_{Rto infty, epsilon to 0} int_{pi}^{-pi} sqrt{epsilon} e^{epsilon t e^{itheta} - (epsilon te^{itheta})^{-1}+ itheta/2} dx$$
I'm stuck here. Instructions were to let $epsilon to t^{-1/2}$ rather than 0 but I don't understand why and I can't evaluate this integral. I know the answer is $frac{cos(2sqrt t)}{sqrt{pi t}}$ from using a different method. Also how should I show the branch points analytically?
integration complex-analysis
$endgroup$
$begingroup$
The Maple code $$ with(inttrans): invlaplace(exp(-1/s)/s, s, t); $$ outputs $${{rm J}left(0,,2,sqrt {t}right)} .$$
$endgroup$
– user64494
Oct 27 '13 at 7:48
add a comment |
$begingroup$
The questions asks to find $F(t) = L^{-1}{s^{-1/2}e^{-1/s}}$
I've made a branch cut along the negative real axis and produced a contour similar to this:
Integration along segments BE, LA go to 0 and since $f(s)$ has no singularities within the contour, the entire integration around it is 0 and we can find $F(t)$ as the integration along AB. So I have:
F(t) = $int_{AB}$ = - ($int_{EH}$ + $int_{HJK}$ + $int_{KL}$)
EH: Take $s=xe^{ipi}$
Then $$int_{EH} =int_{-R}^{-epsilon} frac{e^{st-1/s}}{sqrt s} ds =int_{R}^{epsilon} frac{ie^{1/x-xt}}{sqrt x} dx$$
Similarly for KL: Take $s=xe^{-ipi}$
Then $$int_{KL} =int_{-epsilon}^{-R} frac{e^{st-1/s}}{sqrt s} ds =int_{epsilon}^{R} frac{ie^{1/x-xt}}{sqrt x} dx$$
HJK: Take $s=epsilon e^{itheta}$
Then $$int_{HJK} =int_{pi}^{-pi} frac{e^{st-1/s}}{sqrt s} ds =int_{pi}^{-pi} frac{e^{epsilon t e^{itheta}-1/epsilon e^{itheta}}}{sqrt epsilon e^{itheta /2}} isqrt epsilon e^{itheta /2} ds =int_{pi}^{-pi} sqrt{epsilon} ie^{epsilon t e^{itheta} - (epsilon te^{itheta})^{-1}+ itheta/2} dx$$
Now, assuming these are correct (which might not be wise):
$$F(t) = -frac{1}{2pi i}lim_{Rto infty, epsilon to 0} int_{R}^{epsilon} frac{ie^{1/x-xt}}{sqrt x} dx + int_{epsilon}^{R} frac{ie^{1/x-xt}}{sqrt x} dx + int_{pi}^{-pi} sqrt{epsilon} ie^{epsilon t e^{itheta} - (epsilon te^{itheta})^{-1}+ itheta/2} dx$$
$$therefore F(t) = -frac{1}{2pi}lim_{Rto infty, epsilon to 0} int_{pi}^{-pi} sqrt{epsilon} e^{epsilon t e^{itheta} - (epsilon te^{itheta})^{-1}+ itheta/2} dx$$
I'm stuck here. Instructions were to let $epsilon to t^{-1/2}$ rather than 0 but I don't understand why and I can't evaluate this integral. I know the answer is $frac{cos(2sqrt t)}{sqrt{pi t}}$ from using a different method. Also how should I show the branch points analytically?
integration complex-analysis
$endgroup$
The questions asks to find $F(t) = L^{-1}{s^{-1/2}e^{-1/s}}$
I've made a branch cut along the negative real axis and produced a contour similar to this:
Integration along segments BE, LA go to 0 and since $f(s)$ has no singularities within the contour, the entire integration around it is 0 and we can find $F(t)$ as the integration along AB. So I have:
F(t) = $int_{AB}$ = - ($int_{EH}$ + $int_{HJK}$ + $int_{KL}$)
EH: Take $s=xe^{ipi}$
Then $$int_{EH} =int_{-R}^{-epsilon} frac{e^{st-1/s}}{sqrt s} ds =int_{R}^{epsilon} frac{ie^{1/x-xt}}{sqrt x} dx$$
Similarly for KL: Take $s=xe^{-ipi}$
Then $$int_{KL} =int_{-epsilon}^{-R} frac{e^{st-1/s}}{sqrt s} ds =int_{epsilon}^{R} frac{ie^{1/x-xt}}{sqrt x} dx$$
HJK: Take $s=epsilon e^{itheta}$
Then $$int_{HJK} =int_{pi}^{-pi} frac{e^{st-1/s}}{sqrt s} ds =int_{pi}^{-pi} frac{e^{epsilon t e^{itheta}-1/epsilon e^{itheta}}}{sqrt epsilon e^{itheta /2}} isqrt epsilon e^{itheta /2} ds =int_{pi}^{-pi} sqrt{epsilon} ie^{epsilon t e^{itheta} - (epsilon te^{itheta})^{-1}+ itheta/2} dx$$
Now, assuming these are correct (which might not be wise):
$$F(t) = -frac{1}{2pi i}lim_{Rto infty, epsilon to 0} int_{R}^{epsilon} frac{ie^{1/x-xt}}{sqrt x} dx + int_{epsilon}^{R} frac{ie^{1/x-xt}}{sqrt x} dx + int_{pi}^{-pi} sqrt{epsilon} ie^{epsilon t e^{itheta} - (epsilon te^{itheta})^{-1}+ itheta/2} dx$$
$$therefore F(t) = -frac{1}{2pi}lim_{Rto infty, epsilon to 0} int_{pi}^{-pi} sqrt{epsilon} e^{epsilon t e^{itheta} - (epsilon te^{itheta})^{-1}+ itheta/2} dx$$
I'm stuck here. Instructions were to let $epsilon to t^{-1/2}$ rather than 0 but I don't understand why and I can't evaluate this integral. I know the answer is $frac{cos(2sqrt t)}{sqrt{pi t}}$ from using a different method. Also how should I show the branch points analytically?
integration complex-analysis
integration complex-analysis
edited Dec 23 '18 at 21:18
Glorfindel
3,41981830
3,41981830
asked Oct 27 '13 at 7:43
GuestGuest
62
62
$begingroup$
The Maple code $$ with(inttrans): invlaplace(exp(-1/s)/s, s, t); $$ outputs $${{rm J}left(0,,2,sqrt {t}right)} .$$
$endgroup$
– user64494
Oct 27 '13 at 7:48
add a comment |
$begingroup$
The Maple code $$ with(inttrans): invlaplace(exp(-1/s)/s, s, t); $$ outputs $${{rm J}left(0,,2,sqrt {t}right)} .$$
$endgroup$
– user64494
Oct 27 '13 at 7:48
$begingroup$
The Maple code $$ with(inttrans): invlaplace(exp(-1/s)/s, s, t); $$ outputs $${{rm J}left(0,,2,sqrt {t}right)} .$$
$endgroup$
– user64494
Oct 27 '13 at 7:48
$begingroup$
The Maple code $$ with(inttrans): invlaplace(exp(-1/s)/s, s, t); $$ outputs $${{rm J}left(0,,2,sqrt {t}right)} .$$
$endgroup$
– user64494
Oct 27 '13 at 7:48
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f541218%2finverse-laplace-transform-by-complex-inversion-theorem%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f541218%2finverse-laplace-transform-by-complex-inversion-theorem%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
The Maple code $$ with(inttrans): invlaplace(exp(-1/s)/s, s, t); $$ outputs $${{rm J}left(0,,2,sqrt {t}right)} .$$
$endgroup$
– user64494
Oct 27 '13 at 7:48