Confusion with a multivariate Poisson distribution












1












$begingroup$


I am looking at a multinomial Poisson distribution. Failing to obtain the denominator.



We have that $X_1, ..., X_n sim mathbb{P}(lambda)$, where $theta = exp^{-lambda}$



We know that $$mathbb{P}(X=x) = frac{lambda^x theta}{x!}$$



Since the variables are IID, we know that:



$$mathbb{P}(mathbf{X}) = prod_{i=1}^n frac{lambda^{x_i} theta}{x_i!} $$



this when simplified, gives me:



$$mathbb{P}(mathbf{X}) = left( theta^n lambda^{sum_i x_i} right)left( frac{1}{prod_{i=1}^n x_i!} right) $$



If denote the sufficient statistic $T$ as $sum_i x_i = t$, then we have:



$$mathbb{P}(mathbf{X}) = left( theta^n lambda^t right) left( frac{1}{prod_{i=1}^n x_i!} right)$$



However, Cambridge stats notes, page 15 example 3.4 (b) last equation line, implies that $prod_{i=1}^n x_i! = t!$. Actually, I think I am mixing something up... Isn't the distribution $mathbb{P}(sum_i X_i = t)$ the one that I have been deriving above?










share|cite|improve this question











$endgroup$












  • $begingroup$
    $frac{1}{prod_{i=1}^n x_i!}$ is in the expression for $mathbb P(mathbf{X}=mathbf{x})$ while $frac{1}{t!}$ in in the expression for the rather larger $mathbb Pleft(sum X_i =tright)$
    $endgroup$
    – Henry
    Dec 19 '18 at 16:50












  • $begingroup$
    thanks! Can you give me a tip on how to derive the equation for $mathbb{P} left( sum_i X_i = t right)$
    $endgroup$
    – i squared - Keep it Real
    Dec 19 '18 at 16:53


















1












$begingroup$


I am looking at a multinomial Poisson distribution. Failing to obtain the denominator.



We have that $X_1, ..., X_n sim mathbb{P}(lambda)$, where $theta = exp^{-lambda}$



We know that $$mathbb{P}(X=x) = frac{lambda^x theta}{x!}$$



Since the variables are IID, we know that:



$$mathbb{P}(mathbf{X}) = prod_{i=1}^n frac{lambda^{x_i} theta}{x_i!} $$



this when simplified, gives me:



$$mathbb{P}(mathbf{X}) = left( theta^n lambda^{sum_i x_i} right)left( frac{1}{prod_{i=1}^n x_i!} right) $$



If denote the sufficient statistic $T$ as $sum_i x_i = t$, then we have:



$$mathbb{P}(mathbf{X}) = left( theta^n lambda^t right) left( frac{1}{prod_{i=1}^n x_i!} right)$$



However, Cambridge stats notes, page 15 example 3.4 (b) last equation line, implies that $prod_{i=1}^n x_i! = t!$. Actually, I think I am mixing something up... Isn't the distribution $mathbb{P}(sum_i X_i = t)$ the one that I have been deriving above?










share|cite|improve this question











$endgroup$












  • $begingroup$
    $frac{1}{prod_{i=1}^n x_i!}$ is in the expression for $mathbb P(mathbf{X}=mathbf{x})$ while $frac{1}{t!}$ in in the expression for the rather larger $mathbb Pleft(sum X_i =tright)$
    $endgroup$
    – Henry
    Dec 19 '18 at 16:50












  • $begingroup$
    thanks! Can you give me a tip on how to derive the equation for $mathbb{P} left( sum_i X_i = t right)$
    $endgroup$
    – i squared - Keep it Real
    Dec 19 '18 at 16:53
















1












1








1





$begingroup$


I am looking at a multinomial Poisson distribution. Failing to obtain the denominator.



We have that $X_1, ..., X_n sim mathbb{P}(lambda)$, where $theta = exp^{-lambda}$



We know that $$mathbb{P}(X=x) = frac{lambda^x theta}{x!}$$



Since the variables are IID, we know that:



$$mathbb{P}(mathbf{X}) = prod_{i=1}^n frac{lambda^{x_i} theta}{x_i!} $$



this when simplified, gives me:



$$mathbb{P}(mathbf{X}) = left( theta^n lambda^{sum_i x_i} right)left( frac{1}{prod_{i=1}^n x_i!} right) $$



If denote the sufficient statistic $T$ as $sum_i x_i = t$, then we have:



$$mathbb{P}(mathbf{X}) = left( theta^n lambda^t right) left( frac{1}{prod_{i=1}^n x_i!} right)$$



However, Cambridge stats notes, page 15 example 3.4 (b) last equation line, implies that $prod_{i=1}^n x_i! = t!$. Actually, I think I am mixing something up... Isn't the distribution $mathbb{P}(sum_i X_i = t)$ the one that I have been deriving above?










share|cite|improve this question











$endgroup$




I am looking at a multinomial Poisson distribution. Failing to obtain the denominator.



We have that $X_1, ..., X_n sim mathbb{P}(lambda)$, where $theta = exp^{-lambda}$



We know that $$mathbb{P}(X=x) = frac{lambda^x theta}{x!}$$



Since the variables are IID, we know that:



$$mathbb{P}(mathbf{X}) = prod_{i=1}^n frac{lambda^{x_i} theta}{x_i!} $$



this when simplified, gives me:



$$mathbb{P}(mathbf{X}) = left( theta^n lambda^{sum_i x_i} right)left( frac{1}{prod_{i=1}^n x_i!} right) $$



If denote the sufficient statistic $T$ as $sum_i x_i = t$, then we have:



$$mathbb{P}(mathbf{X}) = left( theta^n lambda^t right) left( frac{1}{prod_{i=1}^n x_i!} right)$$



However, Cambridge stats notes, page 15 example 3.4 (b) last equation line, implies that $prod_{i=1}^n x_i! = t!$. Actually, I think I am mixing something up... Isn't the distribution $mathbb{P}(sum_i X_i = t)$ the one that I have been deriving above?







probability statistics






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 19 '18 at 16:28







i squared - Keep it Real

















asked Dec 19 '18 at 16:15









i squared - Keep it Reali squared - Keep it Real

1,5871927




1,5871927












  • $begingroup$
    $frac{1}{prod_{i=1}^n x_i!}$ is in the expression for $mathbb P(mathbf{X}=mathbf{x})$ while $frac{1}{t!}$ in in the expression for the rather larger $mathbb Pleft(sum X_i =tright)$
    $endgroup$
    – Henry
    Dec 19 '18 at 16:50












  • $begingroup$
    thanks! Can you give me a tip on how to derive the equation for $mathbb{P} left( sum_i X_i = t right)$
    $endgroup$
    – i squared - Keep it Real
    Dec 19 '18 at 16:53




















  • $begingroup$
    $frac{1}{prod_{i=1}^n x_i!}$ is in the expression for $mathbb P(mathbf{X}=mathbf{x})$ while $frac{1}{t!}$ in in the expression for the rather larger $mathbb Pleft(sum X_i =tright)$
    $endgroup$
    – Henry
    Dec 19 '18 at 16:50












  • $begingroup$
    thanks! Can you give me a tip on how to derive the equation for $mathbb{P} left( sum_i X_i = t right)$
    $endgroup$
    – i squared - Keep it Real
    Dec 19 '18 at 16:53


















$begingroup$
$frac{1}{prod_{i=1}^n x_i!}$ is in the expression for $mathbb P(mathbf{X}=mathbf{x})$ while $frac{1}{t!}$ in in the expression for the rather larger $mathbb Pleft(sum X_i =tright)$
$endgroup$
– Henry
Dec 19 '18 at 16:50






$begingroup$
$frac{1}{prod_{i=1}^n x_i!}$ is in the expression for $mathbb P(mathbf{X}=mathbf{x})$ while $frac{1}{t!}$ in in the expression for the rather larger $mathbb Pleft(sum X_i =tright)$
$endgroup$
– Henry
Dec 19 '18 at 16:50














$begingroup$
thanks! Can you give me a tip on how to derive the equation for $mathbb{P} left( sum_i X_i = t right)$
$endgroup$
– i squared - Keep it Real
Dec 19 '18 at 16:53






$begingroup$
thanks! Can you give me a tip on how to derive the equation for $mathbb{P} left( sum_i X_i = t right)$
$endgroup$
– i squared - Keep it Real
Dec 19 '18 at 16:53












1 Answer
1






active

oldest

votes


















1












$begingroup$

The key point is that the $X_i$´s are poisson distributed. Then the sum of poisson distributed random variables can be derived. For instance here (two variables). For $n$ variables we get



$$Pleft( sum_{i=1}^{n} X_i=t right)=frac{left( ncdot lambdaright)^t}{t!}cdot e^{-ncdot lambda}$$



Now it is straigtforward to caclculate



$$frac{mathbb P(X_1=0 cap sum_{i=2}^n X_i=t)}{mathbb P(sum_{i=1}^n X_i=t)}=frac{mathbb P(X_1=0) cdot mathbb P( sum_{i=2}^n X_i=t)}{mathbb P(sum_{i=1}^n X_i=t)}$$






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3046563%2fconfusion-with-a-multivariate-poisson-distribution%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1












    $begingroup$

    The key point is that the $X_i$´s are poisson distributed. Then the sum of poisson distributed random variables can be derived. For instance here (two variables). For $n$ variables we get



    $$Pleft( sum_{i=1}^{n} X_i=t right)=frac{left( ncdot lambdaright)^t}{t!}cdot e^{-ncdot lambda}$$



    Now it is straigtforward to caclculate



    $$frac{mathbb P(X_1=0 cap sum_{i=2}^n X_i=t)}{mathbb P(sum_{i=1}^n X_i=t)}=frac{mathbb P(X_1=0) cdot mathbb P( sum_{i=2}^n X_i=t)}{mathbb P(sum_{i=1}^n X_i=t)}$$






    share|cite|improve this answer









    $endgroup$


















      1












      $begingroup$

      The key point is that the $X_i$´s are poisson distributed. Then the sum of poisson distributed random variables can be derived. For instance here (two variables). For $n$ variables we get



      $$Pleft( sum_{i=1}^{n} X_i=t right)=frac{left( ncdot lambdaright)^t}{t!}cdot e^{-ncdot lambda}$$



      Now it is straigtforward to caclculate



      $$frac{mathbb P(X_1=0 cap sum_{i=2}^n X_i=t)}{mathbb P(sum_{i=1}^n X_i=t)}=frac{mathbb P(X_1=0) cdot mathbb P( sum_{i=2}^n X_i=t)}{mathbb P(sum_{i=1}^n X_i=t)}$$






      share|cite|improve this answer









      $endgroup$
















        1












        1








        1





        $begingroup$

        The key point is that the $X_i$´s are poisson distributed. Then the sum of poisson distributed random variables can be derived. For instance here (two variables). For $n$ variables we get



        $$Pleft( sum_{i=1}^{n} X_i=t right)=frac{left( ncdot lambdaright)^t}{t!}cdot e^{-ncdot lambda}$$



        Now it is straigtforward to caclculate



        $$frac{mathbb P(X_1=0 cap sum_{i=2}^n X_i=t)}{mathbb P(sum_{i=1}^n X_i=t)}=frac{mathbb P(X_1=0) cdot mathbb P( sum_{i=2}^n X_i=t)}{mathbb P(sum_{i=1}^n X_i=t)}$$






        share|cite|improve this answer









        $endgroup$



        The key point is that the $X_i$´s are poisson distributed. Then the sum of poisson distributed random variables can be derived. For instance here (two variables). For $n$ variables we get



        $$Pleft( sum_{i=1}^{n} X_i=t right)=frac{left( ncdot lambdaright)^t}{t!}cdot e^{-ncdot lambda}$$



        Now it is straigtforward to caclculate



        $$frac{mathbb P(X_1=0 cap sum_{i=2}^n X_i=t)}{mathbb P(sum_{i=1}^n X_i=t)}=frac{mathbb P(X_1=0) cdot mathbb P( sum_{i=2}^n X_i=t)}{mathbb P(sum_{i=1}^n X_i=t)}$$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Dec 19 '18 at 17:37









        callculuscallculus

        18.1k31427




        18.1k31427






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3046563%2fconfusion-with-a-multivariate-poisson-distribution%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Ellipse (mathématiques)

            Quarter-circle Tiles

            Mont Emei