Confusion with a multivariate Poisson distribution
$begingroup$
I am looking at a multinomial Poisson distribution. Failing to obtain the denominator.
We have that $X_1, ..., X_n sim mathbb{P}(lambda)$, where $theta = exp^{-lambda}$
We know that $$mathbb{P}(X=x) = frac{lambda^x theta}{x!}$$
Since the variables are IID, we know that:
$$mathbb{P}(mathbf{X}) = prod_{i=1}^n frac{lambda^{x_i} theta}{x_i!} $$
this when simplified, gives me:
$$mathbb{P}(mathbf{X}) = left( theta^n lambda^{sum_i x_i} right)left( frac{1}{prod_{i=1}^n x_i!} right) $$
If denote the sufficient statistic $T$ as $sum_i x_i = t$, then we have:
$$mathbb{P}(mathbf{X}) = left( theta^n lambda^t right) left( frac{1}{prod_{i=1}^n x_i!} right)$$
However, Cambridge stats notes, page 15 example 3.4 (b) last equation line, implies that $prod_{i=1}^n x_i! = t!$. Actually, I think I am mixing something up... Isn't the distribution $mathbb{P}(sum_i X_i = t)$ the one that I have been deriving above?
probability statistics
$endgroup$
add a comment |
$begingroup$
I am looking at a multinomial Poisson distribution. Failing to obtain the denominator.
We have that $X_1, ..., X_n sim mathbb{P}(lambda)$, where $theta = exp^{-lambda}$
We know that $$mathbb{P}(X=x) = frac{lambda^x theta}{x!}$$
Since the variables are IID, we know that:
$$mathbb{P}(mathbf{X}) = prod_{i=1}^n frac{lambda^{x_i} theta}{x_i!} $$
this when simplified, gives me:
$$mathbb{P}(mathbf{X}) = left( theta^n lambda^{sum_i x_i} right)left( frac{1}{prod_{i=1}^n x_i!} right) $$
If denote the sufficient statistic $T$ as $sum_i x_i = t$, then we have:
$$mathbb{P}(mathbf{X}) = left( theta^n lambda^t right) left( frac{1}{prod_{i=1}^n x_i!} right)$$
However, Cambridge stats notes, page 15 example 3.4 (b) last equation line, implies that $prod_{i=1}^n x_i! = t!$. Actually, I think I am mixing something up... Isn't the distribution $mathbb{P}(sum_i X_i = t)$ the one that I have been deriving above?
probability statistics
$endgroup$
$begingroup$
$frac{1}{prod_{i=1}^n x_i!}$ is in the expression for $mathbb P(mathbf{X}=mathbf{x})$ while $frac{1}{t!}$ in in the expression for the rather larger $mathbb Pleft(sum X_i =tright)$
$endgroup$
– Henry
Dec 19 '18 at 16:50
$begingroup$
thanks! Can you give me a tip on how to derive the equation for $mathbb{P} left( sum_i X_i = t right)$
$endgroup$
– i squared - Keep it Real
Dec 19 '18 at 16:53
add a comment |
$begingroup$
I am looking at a multinomial Poisson distribution. Failing to obtain the denominator.
We have that $X_1, ..., X_n sim mathbb{P}(lambda)$, where $theta = exp^{-lambda}$
We know that $$mathbb{P}(X=x) = frac{lambda^x theta}{x!}$$
Since the variables are IID, we know that:
$$mathbb{P}(mathbf{X}) = prod_{i=1}^n frac{lambda^{x_i} theta}{x_i!} $$
this when simplified, gives me:
$$mathbb{P}(mathbf{X}) = left( theta^n lambda^{sum_i x_i} right)left( frac{1}{prod_{i=1}^n x_i!} right) $$
If denote the sufficient statistic $T$ as $sum_i x_i = t$, then we have:
$$mathbb{P}(mathbf{X}) = left( theta^n lambda^t right) left( frac{1}{prod_{i=1}^n x_i!} right)$$
However, Cambridge stats notes, page 15 example 3.4 (b) last equation line, implies that $prod_{i=1}^n x_i! = t!$. Actually, I think I am mixing something up... Isn't the distribution $mathbb{P}(sum_i X_i = t)$ the one that I have been deriving above?
probability statistics
$endgroup$
I am looking at a multinomial Poisson distribution. Failing to obtain the denominator.
We have that $X_1, ..., X_n sim mathbb{P}(lambda)$, where $theta = exp^{-lambda}$
We know that $$mathbb{P}(X=x) = frac{lambda^x theta}{x!}$$
Since the variables are IID, we know that:
$$mathbb{P}(mathbf{X}) = prod_{i=1}^n frac{lambda^{x_i} theta}{x_i!} $$
this when simplified, gives me:
$$mathbb{P}(mathbf{X}) = left( theta^n lambda^{sum_i x_i} right)left( frac{1}{prod_{i=1}^n x_i!} right) $$
If denote the sufficient statistic $T$ as $sum_i x_i = t$, then we have:
$$mathbb{P}(mathbf{X}) = left( theta^n lambda^t right) left( frac{1}{prod_{i=1}^n x_i!} right)$$
However, Cambridge stats notes, page 15 example 3.4 (b) last equation line, implies that $prod_{i=1}^n x_i! = t!$. Actually, I think I am mixing something up... Isn't the distribution $mathbb{P}(sum_i X_i = t)$ the one that I have been deriving above?
probability statistics
probability statistics
edited Dec 19 '18 at 16:28
i squared - Keep it Real
asked Dec 19 '18 at 16:15
i squared - Keep it Reali squared - Keep it Real
1,5871927
1,5871927
$begingroup$
$frac{1}{prod_{i=1}^n x_i!}$ is in the expression for $mathbb P(mathbf{X}=mathbf{x})$ while $frac{1}{t!}$ in in the expression for the rather larger $mathbb Pleft(sum X_i =tright)$
$endgroup$
– Henry
Dec 19 '18 at 16:50
$begingroup$
thanks! Can you give me a tip on how to derive the equation for $mathbb{P} left( sum_i X_i = t right)$
$endgroup$
– i squared - Keep it Real
Dec 19 '18 at 16:53
add a comment |
$begingroup$
$frac{1}{prod_{i=1}^n x_i!}$ is in the expression for $mathbb P(mathbf{X}=mathbf{x})$ while $frac{1}{t!}$ in in the expression for the rather larger $mathbb Pleft(sum X_i =tright)$
$endgroup$
– Henry
Dec 19 '18 at 16:50
$begingroup$
thanks! Can you give me a tip on how to derive the equation for $mathbb{P} left( sum_i X_i = t right)$
$endgroup$
– i squared - Keep it Real
Dec 19 '18 at 16:53
$begingroup$
$frac{1}{prod_{i=1}^n x_i!}$ is in the expression for $mathbb P(mathbf{X}=mathbf{x})$ while $frac{1}{t!}$ in in the expression for the rather larger $mathbb Pleft(sum X_i =tright)$
$endgroup$
– Henry
Dec 19 '18 at 16:50
$begingroup$
$frac{1}{prod_{i=1}^n x_i!}$ is in the expression for $mathbb P(mathbf{X}=mathbf{x})$ while $frac{1}{t!}$ in in the expression for the rather larger $mathbb Pleft(sum X_i =tright)$
$endgroup$
– Henry
Dec 19 '18 at 16:50
$begingroup$
thanks! Can you give me a tip on how to derive the equation for $mathbb{P} left( sum_i X_i = t right)$
$endgroup$
– i squared - Keep it Real
Dec 19 '18 at 16:53
$begingroup$
thanks! Can you give me a tip on how to derive the equation for $mathbb{P} left( sum_i X_i = t right)$
$endgroup$
– i squared - Keep it Real
Dec 19 '18 at 16:53
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
The key point is that the $X_i$´s are poisson distributed. Then the sum of poisson distributed random variables can be derived. For instance here (two variables). For $n$ variables we get
$$Pleft( sum_{i=1}^{n} X_i=t right)=frac{left( ncdot lambdaright)^t}{t!}cdot e^{-ncdot lambda}$$
Now it is straigtforward to caclculate
$$frac{mathbb P(X_1=0 cap sum_{i=2}^n X_i=t)}{mathbb P(sum_{i=1}^n X_i=t)}=frac{mathbb P(X_1=0) cdot mathbb P( sum_{i=2}^n X_i=t)}{mathbb P(sum_{i=1}^n X_i=t)}$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3046563%2fconfusion-with-a-multivariate-poisson-distribution%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The key point is that the $X_i$´s are poisson distributed. Then the sum of poisson distributed random variables can be derived. For instance here (two variables). For $n$ variables we get
$$Pleft( sum_{i=1}^{n} X_i=t right)=frac{left( ncdot lambdaright)^t}{t!}cdot e^{-ncdot lambda}$$
Now it is straigtforward to caclculate
$$frac{mathbb P(X_1=0 cap sum_{i=2}^n X_i=t)}{mathbb P(sum_{i=1}^n X_i=t)}=frac{mathbb P(X_1=0) cdot mathbb P( sum_{i=2}^n X_i=t)}{mathbb P(sum_{i=1}^n X_i=t)}$$
$endgroup$
add a comment |
$begingroup$
The key point is that the $X_i$´s are poisson distributed. Then the sum of poisson distributed random variables can be derived. For instance here (two variables). For $n$ variables we get
$$Pleft( sum_{i=1}^{n} X_i=t right)=frac{left( ncdot lambdaright)^t}{t!}cdot e^{-ncdot lambda}$$
Now it is straigtforward to caclculate
$$frac{mathbb P(X_1=0 cap sum_{i=2}^n X_i=t)}{mathbb P(sum_{i=1}^n X_i=t)}=frac{mathbb P(X_1=0) cdot mathbb P( sum_{i=2}^n X_i=t)}{mathbb P(sum_{i=1}^n X_i=t)}$$
$endgroup$
add a comment |
$begingroup$
The key point is that the $X_i$´s are poisson distributed. Then the sum of poisson distributed random variables can be derived. For instance here (two variables). For $n$ variables we get
$$Pleft( sum_{i=1}^{n} X_i=t right)=frac{left( ncdot lambdaright)^t}{t!}cdot e^{-ncdot lambda}$$
Now it is straigtforward to caclculate
$$frac{mathbb P(X_1=0 cap sum_{i=2}^n X_i=t)}{mathbb P(sum_{i=1}^n X_i=t)}=frac{mathbb P(X_1=0) cdot mathbb P( sum_{i=2}^n X_i=t)}{mathbb P(sum_{i=1}^n X_i=t)}$$
$endgroup$
The key point is that the $X_i$´s are poisson distributed. Then the sum of poisson distributed random variables can be derived. For instance here (two variables). For $n$ variables we get
$$Pleft( sum_{i=1}^{n} X_i=t right)=frac{left( ncdot lambdaright)^t}{t!}cdot e^{-ncdot lambda}$$
Now it is straigtforward to caclculate
$$frac{mathbb P(X_1=0 cap sum_{i=2}^n X_i=t)}{mathbb P(sum_{i=1}^n X_i=t)}=frac{mathbb P(X_1=0) cdot mathbb P( sum_{i=2}^n X_i=t)}{mathbb P(sum_{i=1}^n X_i=t)}$$
answered Dec 19 '18 at 17:37
callculuscallculus
18.1k31427
18.1k31427
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3046563%2fconfusion-with-a-multivariate-poisson-distribution%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
$frac{1}{prod_{i=1}^n x_i!}$ is in the expression for $mathbb P(mathbf{X}=mathbf{x})$ while $frac{1}{t!}$ in in the expression for the rather larger $mathbb Pleft(sum X_i =tright)$
$endgroup$
– Henry
Dec 19 '18 at 16:50
$begingroup$
thanks! Can you give me a tip on how to derive the equation for $mathbb{P} left( sum_i X_i = t right)$
$endgroup$
– i squared - Keep it Real
Dec 19 '18 at 16:53