show $sum_{cyc}(1-x)^2ge sum_{cyc}frac{z^2(1-x^2)(1-y^2)}{(xy+z)^2}.$












7












$begingroup$


Let $x,y,z>0$. Show that
$$sum_{cyc}(1-x)^2ge sum_{cyc}dfrac{z^2(1-x^2)(1-y^2)}{(xy+z)^2}.$$
Here's what I have done. The expression
$$sum_{cyc}(1-x)left((1-x)-dfrac{z^2(1+x)(1-y^2)}{(xy+z)^2}right)ge 0$$
or
$$sum_{cyc}(1-x)cdotdfrac{x^2y^2+y^2z^2+xy^2z^2+2xyz-2xz^2-2x^2yz-x^3y^2}{(xy+z)^2}ge 0.$$
But this way does not help for the starting inequality.










share|cite|improve this question











$endgroup$












  • $begingroup$
    @Rozenberg Is inequality true for all nonnegatives? Or is there counter-exs ?
    $endgroup$
    – Merdanov
    Jun 22 '17 at 12:00










  • $begingroup$
    maybe let $y=x+p, z=x+p+q.p,qge 0$ is usefull?
    $endgroup$
    – communnites
    Jun 29 '17 at 4:54










  • $begingroup$
    I have a proof for $x+y+zgeqfrac{3}{2}.$
    $endgroup$
    – Michael Rozenberg
    Dec 21 '18 at 13:01










  • $begingroup$
    Hint became the answer.
    $endgroup$
    – Yuri Negometyanov
    Dec 27 '18 at 14:49


















7












$begingroup$


Let $x,y,z>0$. Show that
$$sum_{cyc}(1-x)^2ge sum_{cyc}dfrac{z^2(1-x^2)(1-y^2)}{(xy+z)^2}.$$
Here's what I have done. The expression
$$sum_{cyc}(1-x)left((1-x)-dfrac{z^2(1+x)(1-y^2)}{(xy+z)^2}right)ge 0$$
or
$$sum_{cyc}(1-x)cdotdfrac{x^2y^2+y^2z^2+xy^2z^2+2xyz-2xz^2-2x^2yz-x^3y^2}{(xy+z)^2}ge 0.$$
But this way does not help for the starting inequality.










share|cite|improve this question











$endgroup$












  • $begingroup$
    @Rozenberg Is inequality true for all nonnegatives? Or is there counter-exs ?
    $endgroup$
    – Merdanov
    Jun 22 '17 at 12:00










  • $begingroup$
    maybe let $y=x+p, z=x+p+q.p,qge 0$ is usefull?
    $endgroup$
    – communnites
    Jun 29 '17 at 4:54










  • $begingroup$
    I have a proof for $x+y+zgeqfrac{3}{2}.$
    $endgroup$
    – Michael Rozenberg
    Dec 21 '18 at 13:01










  • $begingroup$
    Hint became the answer.
    $endgroup$
    – Yuri Negometyanov
    Dec 27 '18 at 14:49
















7












7








7


5



$begingroup$


Let $x,y,z>0$. Show that
$$sum_{cyc}(1-x)^2ge sum_{cyc}dfrac{z^2(1-x^2)(1-y^2)}{(xy+z)^2}.$$
Here's what I have done. The expression
$$sum_{cyc}(1-x)left((1-x)-dfrac{z^2(1+x)(1-y^2)}{(xy+z)^2}right)ge 0$$
or
$$sum_{cyc}(1-x)cdotdfrac{x^2y^2+y^2z^2+xy^2z^2+2xyz-2xz^2-2x^2yz-x^3y^2}{(xy+z)^2}ge 0.$$
But this way does not help for the starting inequality.










share|cite|improve this question











$endgroup$




Let $x,y,z>0$. Show that
$$sum_{cyc}(1-x)^2ge sum_{cyc}dfrac{z^2(1-x^2)(1-y^2)}{(xy+z)^2}.$$
Here's what I have done. The expression
$$sum_{cyc}(1-x)left((1-x)-dfrac{z^2(1+x)(1-y^2)}{(xy+z)^2}right)ge 0$$
or
$$sum_{cyc}(1-x)cdotdfrac{x^2y^2+y^2z^2+xy^2z^2+2xyz-2xz^2-2x^2yz-x^3y^2}{(xy+z)^2}ge 0.$$
But this way does not help for the starting inequality.







inequality






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jul 5 '17 at 11:11









Arjang

5,61562363




5,61562363










asked Jun 21 '17 at 0:56









communnitescommunnites

1,1931534




1,1931534












  • $begingroup$
    @Rozenberg Is inequality true for all nonnegatives? Or is there counter-exs ?
    $endgroup$
    – Merdanov
    Jun 22 '17 at 12:00










  • $begingroup$
    maybe let $y=x+p, z=x+p+q.p,qge 0$ is usefull?
    $endgroup$
    – communnites
    Jun 29 '17 at 4:54










  • $begingroup$
    I have a proof for $x+y+zgeqfrac{3}{2}.$
    $endgroup$
    – Michael Rozenberg
    Dec 21 '18 at 13:01










  • $begingroup$
    Hint became the answer.
    $endgroup$
    – Yuri Negometyanov
    Dec 27 '18 at 14:49




















  • $begingroup$
    @Rozenberg Is inequality true for all nonnegatives? Or is there counter-exs ?
    $endgroup$
    – Merdanov
    Jun 22 '17 at 12:00










  • $begingroup$
    maybe let $y=x+p, z=x+p+q.p,qge 0$ is usefull?
    $endgroup$
    – communnites
    Jun 29 '17 at 4:54










  • $begingroup$
    I have a proof for $x+y+zgeqfrac{3}{2}.$
    $endgroup$
    – Michael Rozenberg
    Dec 21 '18 at 13:01










  • $begingroup$
    Hint became the answer.
    $endgroup$
    – Yuri Negometyanov
    Dec 27 '18 at 14:49


















$begingroup$
@Rozenberg Is inequality true for all nonnegatives? Or is there counter-exs ?
$endgroup$
– Merdanov
Jun 22 '17 at 12:00




$begingroup$
@Rozenberg Is inequality true for all nonnegatives? Or is there counter-exs ?
$endgroup$
– Merdanov
Jun 22 '17 at 12:00












$begingroup$
maybe let $y=x+p, z=x+p+q.p,qge 0$ is usefull?
$endgroup$
– communnites
Jun 29 '17 at 4:54




$begingroup$
maybe let $y=x+p, z=x+p+q.p,qge 0$ is usefull?
$endgroup$
– communnites
Jun 29 '17 at 4:54












$begingroup$
I have a proof for $x+y+zgeqfrac{3}{2}.$
$endgroup$
– Michael Rozenberg
Dec 21 '18 at 13:01




$begingroup$
I have a proof for $x+y+zgeqfrac{3}{2}.$
$endgroup$
– Michael Rozenberg
Dec 21 '18 at 13:01












$begingroup$
Hint became the answer.
$endgroup$
– Yuri Negometyanov
Dec 27 '18 at 14:49






$begingroup$
Hint became the answer.
$endgroup$
– Yuri Negometyanov
Dec 27 '18 at 14:49












1 Answer
1






active

oldest

votes


















2





+25







$begingroup$

The idea to prove this inequality is to use the well-know Ky-Fan inequality :



Before that we make the following substitution:



$x=frac{1}{a}$



$y=frac{1}{b}$



$z=frac{1}{c}$



We get the following inequality :



$$sum_{cyc}frac{(1-a)^2}{a^2}geq sum_{cyc} frac{(1-a^2)(1-b^2)}{(ab+c)^2}$$



Now we have the Ky-fan inequality wich state that for $a,b,c$ belongs to $[frac{1}{4};frac{1}{2}]$:



$$frac{(1-a)^2}{a^2}geqfrac{b^2c^2}{(1-b)^2(1-c)^2}Big(frac{3-a-b-c}{a+b+c}Big)^6
$$



So we get this refinement of the starting inequality if we sum each term of the previous inequality:



$$sum_{cyc}frac{(1-a)^2}{a^2}geq sum_{cyc}frac{b^2c^2}{(1-b)^2(1-c)^2}Big(frac{3-a-b-c}{a+b+c}Big)^6 geqsum_{cyc} frac{(1-a^2)(1-b^2)}{(ab+c)^2}$$



So we prove the inequality for $a,b,c$ belongs to $[frac{1}{4};frac{1}{2}]$



To prove the remainder of the theorem you just have to play with a variable $u$ and remark that we always have for all positive $x,y,z$:



$$sum_{cyc}frac{(1-x)^2}{x^2}geq usum_{cyc}frac{(1-a)^2}{a^2}geq usum_{cyc}frac{b^2c^2}{(1-b)^2(1-c)^2}Big(frac{3-a-b-c}{a+b+c}Big)^6\ geq usum_{cyc} frac{(1-a^2)(1-b^2)}{(ab+c)^2}geq sum_{cyc}frac{(1-y^2)(1-z^2)}{(yz+x)^2}$$



We make the following substitution on the first inequality :



$x=cos^2 s$;
$y=cos^2 v$;
$z=cos^2 w$



And



$a=cos^2 p$;
$b=cos^2 r$;
$c=cos^2 q$



With $p,q,r$ belonging to $[arccos (frac{1}{sqrt{2}});arccos(frac{1}{2})]$ :



We get this :



$$sum_{cyc}tan^4 sgeq usum_{cyc}tan^4 p$$



we put :



$$u=frac{sum_{cyc}tan^2 stan^2 v}{sum_{cyc}tan^4 p}$$



Edit for Martin R :



We have build $u$ exactly to obtain the first inequality :



So we have :



$$usum_{cyc}tan^4 p=sum_{cyc}tan^2 stan^2 v$$



And



$$sum_{cyc}tan^4 sgeqsum_{cyc}tan^2 stan^2 v$$



And to conclude it's just Am-Gm or $a^2+b^2geq 2ab$



Now we need to prove that $u$ satisfy the last inequality :



With the previous substitution and combine with the well-know formula $(cos a^2+sin a^2)^2=1$ we find:



$$frac{sum_{cyc}tan^2 stan v^2}{sum_{cyc}tan^4 p}sum_{cyc}frac{(tan^4 p+2tan^2 p)((tan^4 r+2tan^2 r)}{Big(1+frac{cos^2 q}{cos^2 rcos^2 p}Big)^2}geqsum_{cyc}frac{(tan^4 s+2tan^2 s)((tan^4 v+2tan^2 v)}{Big(1+frac{cos^2 w}{cos^2 vcos^2 s}Big)^2}$$






share|cite|improve this answer











$endgroup$









  • 1




    $begingroup$
    Why $sumlimits_{cyc}frac{b^2c^2}{(1-b)^2(1-c)^2}left(frac{3-a-b-c}{a+b+c}right)^6 geqsumlimits_{cyc} frac{(1-a^2)(1-b^2)}{(ab+c)^2}$ is true?
    $endgroup$
    – Michael Rozenberg
    Jul 3 '17 at 8:15












  • $begingroup$
    See here.It works because there is no order on $a,b,c$.
    $endgroup$
    – user448747
    Jul 3 '17 at 12:55










  • $begingroup$
    Explain please your play with a variable $u$ for the rest cases.
    $endgroup$
    – Michael Rozenberg
    Jul 3 '17 at 13:16










  • $begingroup$
    If you use logarithmic majorization you will find a particular value for $u$ ;$u=frac{(1-x)^2a^2}{x^2(1-a)^2}$
    $endgroup$
    – user448747
    Jul 3 '17 at 15:06








  • 1




    $begingroup$
    Can someone, which upper voted this post, explain me why this solution is true? I think it's nothing.
    $endgroup$
    – Michael Rozenberg
    Jul 6 '17 at 5:30











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2330511%2fshow-sum-cyc1-x2-ge-sum-cyc-fracz21-x21-y2xyz2%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









2





+25







$begingroup$

The idea to prove this inequality is to use the well-know Ky-Fan inequality :



Before that we make the following substitution:



$x=frac{1}{a}$



$y=frac{1}{b}$



$z=frac{1}{c}$



We get the following inequality :



$$sum_{cyc}frac{(1-a)^2}{a^2}geq sum_{cyc} frac{(1-a^2)(1-b^2)}{(ab+c)^2}$$



Now we have the Ky-fan inequality wich state that for $a,b,c$ belongs to $[frac{1}{4};frac{1}{2}]$:



$$frac{(1-a)^2}{a^2}geqfrac{b^2c^2}{(1-b)^2(1-c)^2}Big(frac{3-a-b-c}{a+b+c}Big)^6
$$



So we get this refinement of the starting inequality if we sum each term of the previous inequality:



$$sum_{cyc}frac{(1-a)^2}{a^2}geq sum_{cyc}frac{b^2c^2}{(1-b)^2(1-c)^2}Big(frac{3-a-b-c}{a+b+c}Big)^6 geqsum_{cyc} frac{(1-a^2)(1-b^2)}{(ab+c)^2}$$



So we prove the inequality for $a,b,c$ belongs to $[frac{1}{4};frac{1}{2}]$



To prove the remainder of the theorem you just have to play with a variable $u$ and remark that we always have for all positive $x,y,z$:



$$sum_{cyc}frac{(1-x)^2}{x^2}geq usum_{cyc}frac{(1-a)^2}{a^2}geq usum_{cyc}frac{b^2c^2}{(1-b)^2(1-c)^2}Big(frac{3-a-b-c}{a+b+c}Big)^6\ geq usum_{cyc} frac{(1-a^2)(1-b^2)}{(ab+c)^2}geq sum_{cyc}frac{(1-y^2)(1-z^2)}{(yz+x)^2}$$



We make the following substitution on the first inequality :



$x=cos^2 s$;
$y=cos^2 v$;
$z=cos^2 w$



And



$a=cos^2 p$;
$b=cos^2 r$;
$c=cos^2 q$



With $p,q,r$ belonging to $[arccos (frac{1}{sqrt{2}});arccos(frac{1}{2})]$ :



We get this :



$$sum_{cyc}tan^4 sgeq usum_{cyc}tan^4 p$$



we put :



$$u=frac{sum_{cyc}tan^2 stan^2 v}{sum_{cyc}tan^4 p}$$



Edit for Martin R :



We have build $u$ exactly to obtain the first inequality :



So we have :



$$usum_{cyc}tan^4 p=sum_{cyc}tan^2 stan^2 v$$



And



$$sum_{cyc}tan^4 sgeqsum_{cyc}tan^2 stan^2 v$$



And to conclude it's just Am-Gm or $a^2+b^2geq 2ab$



Now we need to prove that $u$ satisfy the last inequality :



With the previous substitution and combine with the well-know formula $(cos a^2+sin a^2)^2=1$ we find:



$$frac{sum_{cyc}tan^2 stan v^2}{sum_{cyc}tan^4 p}sum_{cyc}frac{(tan^4 p+2tan^2 p)((tan^4 r+2tan^2 r)}{Big(1+frac{cos^2 q}{cos^2 rcos^2 p}Big)^2}geqsum_{cyc}frac{(tan^4 s+2tan^2 s)((tan^4 v+2tan^2 v)}{Big(1+frac{cos^2 w}{cos^2 vcos^2 s}Big)^2}$$






share|cite|improve this answer











$endgroup$









  • 1




    $begingroup$
    Why $sumlimits_{cyc}frac{b^2c^2}{(1-b)^2(1-c)^2}left(frac{3-a-b-c}{a+b+c}right)^6 geqsumlimits_{cyc} frac{(1-a^2)(1-b^2)}{(ab+c)^2}$ is true?
    $endgroup$
    – Michael Rozenberg
    Jul 3 '17 at 8:15












  • $begingroup$
    See here.It works because there is no order on $a,b,c$.
    $endgroup$
    – user448747
    Jul 3 '17 at 12:55










  • $begingroup$
    Explain please your play with a variable $u$ for the rest cases.
    $endgroup$
    – Michael Rozenberg
    Jul 3 '17 at 13:16










  • $begingroup$
    If you use logarithmic majorization you will find a particular value for $u$ ;$u=frac{(1-x)^2a^2}{x^2(1-a)^2}$
    $endgroup$
    – user448747
    Jul 3 '17 at 15:06








  • 1




    $begingroup$
    Can someone, which upper voted this post, explain me why this solution is true? I think it's nothing.
    $endgroup$
    – Michael Rozenberg
    Jul 6 '17 at 5:30
















2





+25







$begingroup$

The idea to prove this inequality is to use the well-know Ky-Fan inequality :



Before that we make the following substitution:



$x=frac{1}{a}$



$y=frac{1}{b}$



$z=frac{1}{c}$



We get the following inequality :



$$sum_{cyc}frac{(1-a)^2}{a^2}geq sum_{cyc} frac{(1-a^2)(1-b^2)}{(ab+c)^2}$$



Now we have the Ky-fan inequality wich state that for $a,b,c$ belongs to $[frac{1}{4};frac{1}{2}]$:



$$frac{(1-a)^2}{a^2}geqfrac{b^2c^2}{(1-b)^2(1-c)^2}Big(frac{3-a-b-c}{a+b+c}Big)^6
$$



So we get this refinement of the starting inequality if we sum each term of the previous inequality:



$$sum_{cyc}frac{(1-a)^2}{a^2}geq sum_{cyc}frac{b^2c^2}{(1-b)^2(1-c)^2}Big(frac{3-a-b-c}{a+b+c}Big)^6 geqsum_{cyc} frac{(1-a^2)(1-b^2)}{(ab+c)^2}$$



So we prove the inequality for $a,b,c$ belongs to $[frac{1}{4};frac{1}{2}]$



To prove the remainder of the theorem you just have to play with a variable $u$ and remark that we always have for all positive $x,y,z$:



$$sum_{cyc}frac{(1-x)^2}{x^2}geq usum_{cyc}frac{(1-a)^2}{a^2}geq usum_{cyc}frac{b^2c^2}{(1-b)^2(1-c)^2}Big(frac{3-a-b-c}{a+b+c}Big)^6\ geq usum_{cyc} frac{(1-a^2)(1-b^2)}{(ab+c)^2}geq sum_{cyc}frac{(1-y^2)(1-z^2)}{(yz+x)^2}$$



We make the following substitution on the first inequality :



$x=cos^2 s$;
$y=cos^2 v$;
$z=cos^2 w$



And



$a=cos^2 p$;
$b=cos^2 r$;
$c=cos^2 q$



With $p,q,r$ belonging to $[arccos (frac{1}{sqrt{2}});arccos(frac{1}{2})]$ :



We get this :



$$sum_{cyc}tan^4 sgeq usum_{cyc}tan^4 p$$



we put :



$$u=frac{sum_{cyc}tan^2 stan^2 v}{sum_{cyc}tan^4 p}$$



Edit for Martin R :



We have build $u$ exactly to obtain the first inequality :



So we have :



$$usum_{cyc}tan^4 p=sum_{cyc}tan^2 stan^2 v$$



And



$$sum_{cyc}tan^4 sgeqsum_{cyc}tan^2 stan^2 v$$



And to conclude it's just Am-Gm or $a^2+b^2geq 2ab$



Now we need to prove that $u$ satisfy the last inequality :



With the previous substitution and combine with the well-know formula $(cos a^2+sin a^2)^2=1$ we find:



$$frac{sum_{cyc}tan^2 stan v^2}{sum_{cyc}tan^4 p}sum_{cyc}frac{(tan^4 p+2tan^2 p)((tan^4 r+2tan^2 r)}{Big(1+frac{cos^2 q}{cos^2 rcos^2 p}Big)^2}geqsum_{cyc}frac{(tan^4 s+2tan^2 s)((tan^4 v+2tan^2 v)}{Big(1+frac{cos^2 w}{cos^2 vcos^2 s}Big)^2}$$






share|cite|improve this answer











$endgroup$









  • 1




    $begingroup$
    Why $sumlimits_{cyc}frac{b^2c^2}{(1-b)^2(1-c)^2}left(frac{3-a-b-c}{a+b+c}right)^6 geqsumlimits_{cyc} frac{(1-a^2)(1-b^2)}{(ab+c)^2}$ is true?
    $endgroup$
    – Michael Rozenberg
    Jul 3 '17 at 8:15












  • $begingroup$
    See here.It works because there is no order on $a,b,c$.
    $endgroup$
    – user448747
    Jul 3 '17 at 12:55










  • $begingroup$
    Explain please your play with a variable $u$ for the rest cases.
    $endgroup$
    – Michael Rozenberg
    Jul 3 '17 at 13:16










  • $begingroup$
    If you use logarithmic majorization you will find a particular value for $u$ ;$u=frac{(1-x)^2a^2}{x^2(1-a)^2}$
    $endgroup$
    – user448747
    Jul 3 '17 at 15:06








  • 1




    $begingroup$
    Can someone, which upper voted this post, explain me why this solution is true? I think it's nothing.
    $endgroup$
    – Michael Rozenberg
    Jul 6 '17 at 5:30














2





+25







2





+25



2




+25



$begingroup$

The idea to prove this inequality is to use the well-know Ky-Fan inequality :



Before that we make the following substitution:



$x=frac{1}{a}$



$y=frac{1}{b}$



$z=frac{1}{c}$



We get the following inequality :



$$sum_{cyc}frac{(1-a)^2}{a^2}geq sum_{cyc} frac{(1-a^2)(1-b^2)}{(ab+c)^2}$$



Now we have the Ky-fan inequality wich state that for $a,b,c$ belongs to $[frac{1}{4};frac{1}{2}]$:



$$frac{(1-a)^2}{a^2}geqfrac{b^2c^2}{(1-b)^2(1-c)^2}Big(frac{3-a-b-c}{a+b+c}Big)^6
$$



So we get this refinement of the starting inequality if we sum each term of the previous inequality:



$$sum_{cyc}frac{(1-a)^2}{a^2}geq sum_{cyc}frac{b^2c^2}{(1-b)^2(1-c)^2}Big(frac{3-a-b-c}{a+b+c}Big)^6 geqsum_{cyc} frac{(1-a^2)(1-b^2)}{(ab+c)^2}$$



So we prove the inequality for $a,b,c$ belongs to $[frac{1}{4};frac{1}{2}]$



To prove the remainder of the theorem you just have to play with a variable $u$ and remark that we always have for all positive $x,y,z$:



$$sum_{cyc}frac{(1-x)^2}{x^2}geq usum_{cyc}frac{(1-a)^2}{a^2}geq usum_{cyc}frac{b^2c^2}{(1-b)^2(1-c)^2}Big(frac{3-a-b-c}{a+b+c}Big)^6\ geq usum_{cyc} frac{(1-a^2)(1-b^2)}{(ab+c)^2}geq sum_{cyc}frac{(1-y^2)(1-z^2)}{(yz+x)^2}$$



We make the following substitution on the first inequality :



$x=cos^2 s$;
$y=cos^2 v$;
$z=cos^2 w$



And



$a=cos^2 p$;
$b=cos^2 r$;
$c=cos^2 q$



With $p,q,r$ belonging to $[arccos (frac{1}{sqrt{2}});arccos(frac{1}{2})]$ :



We get this :



$$sum_{cyc}tan^4 sgeq usum_{cyc}tan^4 p$$



we put :



$$u=frac{sum_{cyc}tan^2 stan^2 v}{sum_{cyc}tan^4 p}$$



Edit for Martin R :



We have build $u$ exactly to obtain the first inequality :



So we have :



$$usum_{cyc}tan^4 p=sum_{cyc}tan^2 stan^2 v$$



And



$$sum_{cyc}tan^4 sgeqsum_{cyc}tan^2 stan^2 v$$



And to conclude it's just Am-Gm or $a^2+b^2geq 2ab$



Now we need to prove that $u$ satisfy the last inequality :



With the previous substitution and combine with the well-know formula $(cos a^2+sin a^2)^2=1$ we find:



$$frac{sum_{cyc}tan^2 stan v^2}{sum_{cyc}tan^4 p}sum_{cyc}frac{(tan^4 p+2tan^2 p)((tan^4 r+2tan^2 r)}{Big(1+frac{cos^2 q}{cos^2 rcos^2 p}Big)^2}geqsum_{cyc}frac{(tan^4 s+2tan^2 s)((tan^4 v+2tan^2 v)}{Big(1+frac{cos^2 w}{cos^2 vcos^2 s}Big)^2}$$






share|cite|improve this answer











$endgroup$



The idea to prove this inequality is to use the well-know Ky-Fan inequality :



Before that we make the following substitution:



$x=frac{1}{a}$



$y=frac{1}{b}$



$z=frac{1}{c}$



We get the following inequality :



$$sum_{cyc}frac{(1-a)^2}{a^2}geq sum_{cyc} frac{(1-a^2)(1-b^2)}{(ab+c)^2}$$



Now we have the Ky-fan inequality wich state that for $a,b,c$ belongs to $[frac{1}{4};frac{1}{2}]$:



$$frac{(1-a)^2}{a^2}geqfrac{b^2c^2}{(1-b)^2(1-c)^2}Big(frac{3-a-b-c}{a+b+c}Big)^6
$$



So we get this refinement of the starting inequality if we sum each term of the previous inequality:



$$sum_{cyc}frac{(1-a)^2}{a^2}geq sum_{cyc}frac{b^2c^2}{(1-b)^2(1-c)^2}Big(frac{3-a-b-c}{a+b+c}Big)^6 geqsum_{cyc} frac{(1-a^2)(1-b^2)}{(ab+c)^2}$$



So we prove the inequality for $a,b,c$ belongs to $[frac{1}{4};frac{1}{2}]$



To prove the remainder of the theorem you just have to play with a variable $u$ and remark that we always have for all positive $x,y,z$:



$$sum_{cyc}frac{(1-x)^2}{x^2}geq usum_{cyc}frac{(1-a)^2}{a^2}geq usum_{cyc}frac{b^2c^2}{(1-b)^2(1-c)^2}Big(frac{3-a-b-c}{a+b+c}Big)^6\ geq usum_{cyc} frac{(1-a^2)(1-b^2)}{(ab+c)^2}geq sum_{cyc}frac{(1-y^2)(1-z^2)}{(yz+x)^2}$$



We make the following substitution on the first inequality :



$x=cos^2 s$;
$y=cos^2 v$;
$z=cos^2 w$



And



$a=cos^2 p$;
$b=cos^2 r$;
$c=cos^2 q$



With $p,q,r$ belonging to $[arccos (frac{1}{sqrt{2}});arccos(frac{1}{2})]$ :



We get this :



$$sum_{cyc}tan^4 sgeq usum_{cyc}tan^4 p$$



we put :



$$u=frac{sum_{cyc}tan^2 stan^2 v}{sum_{cyc}tan^4 p}$$



Edit for Martin R :



We have build $u$ exactly to obtain the first inequality :



So we have :



$$usum_{cyc}tan^4 p=sum_{cyc}tan^2 stan^2 v$$



And



$$sum_{cyc}tan^4 sgeqsum_{cyc}tan^2 stan^2 v$$



And to conclude it's just Am-Gm or $a^2+b^2geq 2ab$



Now we need to prove that $u$ satisfy the last inequality :



With the previous substitution and combine with the well-know formula $(cos a^2+sin a^2)^2=1$ we find:



$$frac{sum_{cyc}tan^2 stan v^2}{sum_{cyc}tan^4 p}sum_{cyc}frac{(tan^4 p+2tan^2 p)((tan^4 r+2tan^2 r)}{Big(1+frac{cos^2 q}{cos^2 rcos^2 p}Big)^2}geqsum_{cyc}frac{(tan^4 s+2tan^2 s)((tan^4 v+2tan^2 v)}{Big(1+frac{cos^2 w}{cos^2 vcos^2 s}Big)^2}$$







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Jul 6 '17 at 16:50

























answered Jun 30 '17 at 19:17







user448747















  • 1




    $begingroup$
    Why $sumlimits_{cyc}frac{b^2c^2}{(1-b)^2(1-c)^2}left(frac{3-a-b-c}{a+b+c}right)^6 geqsumlimits_{cyc} frac{(1-a^2)(1-b^2)}{(ab+c)^2}$ is true?
    $endgroup$
    – Michael Rozenberg
    Jul 3 '17 at 8:15












  • $begingroup$
    See here.It works because there is no order on $a,b,c$.
    $endgroup$
    – user448747
    Jul 3 '17 at 12:55










  • $begingroup$
    Explain please your play with a variable $u$ for the rest cases.
    $endgroup$
    – Michael Rozenberg
    Jul 3 '17 at 13:16










  • $begingroup$
    If you use logarithmic majorization you will find a particular value for $u$ ;$u=frac{(1-x)^2a^2}{x^2(1-a)^2}$
    $endgroup$
    – user448747
    Jul 3 '17 at 15:06








  • 1




    $begingroup$
    Can someone, which upper voted this post, explain me why this solution is true? I think it's nothing.
    $endgroup$
    – Michael Rozenberg
    Jul 6 '17 at 5:30














  • 1




    $begingroup$
    Why $sumlimits_{cyc}frac{b^2c^2}{(1-b)^2(1-c)^2}left(frac{3-a-b-c}{a+b+c}right)^6 geqsumlimits_{cyc} frac{(1-a^2)(1-b^2)}{(ab+c)^2}$ is true?
    $endgroup$
    – Michael Rozenberg
    Jul 3 '17 at 8:15












  • $begingroup$
    See here.It works because there is no order on $a,b,c$.
    $endgroup$
    – user448747
    Jul 3 '17 at 12:55










  • $begingroup$
    Explain please your play with a variable $u$ for the rest cases.
    $endgroup$
    – Michael Rozenberg
    Jul 3 '17 at 13:16










  • $begingroup$
    If you use logarithmic majorization you will find a particular value for $u$ ;$u=frac{(1-x)^2a^2}{x^2(1-a)^2}$
    $endgroup$
    – user448747
    Jul 3 '17 at 15:06








  • 1




    $begingroup$
    Can someone, which upper voted this post, explain me why this solution is true? I think it's nothing.
    $endgroup$
    – Michael Rozenberg
    Jul 6 '17 at 5:30








1




1




$begingroup$
Why $sumlimits_{cyc}frac{b^2c^2}{(1-b)^2(1-c)^2}left(frac{3-a-b-c}{a+b+c}right)^6 geqsumlimits_{cyc} frac{(1-a^2)(1-b^2)}{(ab+c)^2}$ is true?
$endgroup$
– Michael Rozenberg
Jul 3 '17 at 8:15






$begingroup$
Why $sumlimits_{cyc}frac{b^2c^2}{(1-b)^2(1-c)^2}left(frac{3-a-b-c}{a+b+c}right)^6 geqsumlimits_{cyc} frac{(1-a^2)(1-b^2)}{(ab+c)^2}$ is true?
$endgroup$
– Michael Rozenberg
Jul 3 '17 at 8:15














$begingroup$
See here.It works because there is no order on $a,b,c$.
$endgroup$
– user448747
Jul 3 '17 at 12:55




$begingroup$
See here.It works because there is no order on $a,b,c$.
$endgroup$
– user448747
Jul 3 '17 at 12:55












$begingroup$
Explain please your play with a variable $u$ for the rest cases.
$endgroup$
– Michael Rozenberg
Jul 3 '17 at 13:16




$begingroup$
Explain please your play with a variable $u$ for the rest cases.
$endgroup$
– Michael Rozenberg
Jul 3 '17 at 13:16












$begingroup$
If you use logarithmic majorization you will find a particular value for $u$ ;$u=frac{(1-x)^2a^2}{x^2(1-a)^2}$
$endgroup$
– user448747
Jul 3 '17 at 15:06






$begingroup$
If you use logarithmic majorization you will find a particular value for $u$ ;$u=frac{(1-x)^2a^2}{x^2(1-a)^2}$
$endgroup$
– user448747
Jul 3 '17 at 15:06






1




1




$begingroup$
Can someone, which upper voted this post, explain me why this solution is true? I think it's nothing.
$endgroup$
– Michael Rozenberg
Jul 6 '17 at 5:30




$begingroup$
Can someone, which upper voted this post, explain me why this solution is true? I think it's nothing.
$endgroup$
– Michael Rozenberg
Jul 6 '17 at 5:30


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2330511%2fshow-sum-cyc1-x2-ge-sum-cyc-fracz21-x21-y2xyz2%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Ellipse (mathématiques)

Quarter-circle Tiles

Mont Emei