$|ta+(1-t)b|^2=t|a|^2+(1-t)|b|^2-t(1-t)|a-b|^2$, Is that true?












2












$begingroup$


Let $|cdot|$ be the euclidean norm on $mathbb{R^n}$.



Let $a,b in mathbb{R^n}$,



My question is do we always have for all $tin [0,1]$ , the following identity ?
$$|ta+(1-t)b|^2=t|a|^2+(1-t)|b|^2-t(1-t)|a-b|^2$$



I tried to test it for $t=1/2$ and it gives me the parallelogram identity.










share|cite|improve this question











$endgroup$

















    2












    $begingroup$


    Let $|cdot|$ be the euclidean norm on $mathbb{R^n}$.



    Let $a,b in mathbb{R^n}$,



    My question is do we always have for all $tin [0,1]$ , the following identity ?
    $$|ta+(1-t)b|^2=t|a|^2+(1-t)|b|^2-t(1-t)|a-b|^2$$



    I tried to test it for $t=1/2$ and it gives me the parallelogram identity.










    share|cite|improve this question











    $endgroup$















      2












      2








      2





      $begingroup$


      Let $|cdot|$ be the euclidean norm on $mathbb{R^n}$.



      Let $a,b in mathbb{R^n}$,



      My question is do we always have for all $tin [0,1]$ , the following identity ?
      $$|ta+(1-t)b|^2=t|a|^2+(1-t)|b|^2-t(1-t)|a-b|^2$$



      I tried to test it for $t=1/2$ and it gives me the parallelogram identity.










      share|cite|improve this question











      $endgroup$




      Let $|cdot|$ be the euclidean norm on $mathbb{R^n}$.



      Let $a,b in mathbb{R^n}$,



      My question is do we always have for all $tin [0,1]$ , the following identity ?
      $$|ta+(1-t)b|^2=t|a|^2+(1-t)|b|^2-t(1-t)|a-b|^2$$



      I tried to test it for $t=1/2$ and it gives me the parallelogram identity.







      real-analysis convex-analysis normed-spaces






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 4 at 4:14









      max_zorn

      3,39061329




      3,39061329










      asked Dec 19 '18 at 17:07









      Anas BOUALIIAnas BOUALII

      1438




      1438






















          1 Answer
          1






          active

          oldest

          votes


















          3












          $begingroup$

          The identity can be proved by noting that $||x||^2 = xcdot x$, hence we have



          $$begin{align}
          ||ta+(1-t)b||^2 &= (ta+(1-t)b)cdot (ta+(1-t)b) \
          &= t^2 acdot a + 2t(1-t)acdot b + (1-t)^2 b cdot b \
          &= tacdot a + (1-t)bcdot b-t(1-t)acdot a - t(1-t)bcdot b) + 2t(1-t)acdot b\
          &= tacdot a + (1-t)bcdot b-t(1-t)(acdot a - 2acdot b + bcdot b) \
          &= tacdot a + (1-t)bcdot b-t(1-t)(a-b)cdot (a-b) \
          &=t||a||^2+(1-t)||b||^2-t(1-t)||a-b||^2
          end{align}$$






          share|cite|improve this answer











          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3046618%2fta1-tb-2-t-a-21-t-b-2-t1-t-a-b-2-is-that-true%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            3












            $begingroup$

            The identity can be proved by noting that $||x||^2 = xcdot x$, hence we have



            $$begin{align}
            ||ta+(1-t)b||^2 &= (ta+(1-t)b)cdot (ta+(1-t)b) \
            &= t^2 acdot a + 2t(1-t)acdot b + (1-t)^2 b cdot b \
            &= tacdot a + (1-t)bcdot b-t(1-t)acdot a - t(1-t)bcdot b) + 2t(1-t)acdot b\
            &= tacdot a + (1-t)bcdot b-t(1-t)(acdot a - 2acdot b + bcdot b) \
            &= tacdot a + (1-t)bcdot b-t(1-t)(a-b)cdot (a-b) \
            &=t||a||^2+(1-t)||b||^2-t(1-t)||a-b||^2
            end{align}$$






            share|cite|improve this answer











            $endgroup$


















              3












              $begingroup$

              The identity can be proved by noting that $||x||^2 = xcdot x$, hence we have



              $$begin{align}
              ||ta+(1-t)b||^2 &= (ta+(1-t)b)cdot (ta+(1-t)b) \
              &= t^2 acdot a + 2t(1-t)acdot b + (1-t)^2 b cdot b \
              &= tacdot a + (1-t)bcdot b-t(1-t)acdot a - t(1-t)bcdot b) + 2t(1-t)acdot b\
              &= tacdot a + (1-t)bcdot b-t(1-t)(acdot a - 2acdot b + bcdot b) \
              &= tacdot a + (1-t)bcdot b-t(1-t)(a-b)cdot (a-b) \
              &=t||a||^2+(1-t)||b||^2-t(1-t)||a-b||^2
              end{align}$$






              share|cite|improve this answer











              $endgroup$
















                3












                3








                3





                $begingroup$

                The identity can be proved by noting that $||x||^2 = xcdot x$, hence we have



                $$begin{align}
                ||ta+(1-t)b||^2 &= (ta+(1-t)b)cdot (ta+(1-t)b) \
                &= t^2 acdot a + 2t(1-t)acdot b + (1-t)^2 b cdot b \
                &= tacdot a + (1-t)bcdot b-t(1-t)acdot a - t(1-t)bcdot b) + 2t(1-t)acdot b\
                &= tacdot a + (1-t)bcdot b-t(1-t)(acdot a - 2acdot b + bcdot b) \
                &= tacdot a + (1-t)bcdot b-t(1-t)(a-b)cdot (a-b) \
                &=t||a||^2+(1-t)||b||^2-t(1-t)||a-b||^2
                end{align}$$






                share|cite|improve this answer











                $endgroup$



                The identity can be proved by noting that $||x||^2 = xcdot x$, hence we have



                $$begin{align}
                ||ta+(1-t)b||^2 &= (ta+(1-t)b)cdot (ta+(1-t)b) \
                &= t^2 acdot a + 2t(1-t)acdot b + (1-t)^2 b cdot b \
                &= tacdot a + (1-t)bcdot b-t(1-t)acdot a - t(1-t)bcdot b) + 2t(1-t)acdot b\
                &= tacdot a + (1-t)bcdot b-t(1-t)(acdot a - 2acdot b + bcdot b) \
                &= tacdot a + (1-t)bcdot b-t(1-t)(a-b)cdot (a-b) \
                &=t||a||^2+(1-t)||b||^2-t(1-t)||a-b||^2
                end{align}$$







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited Dec 20 '18 at 9:56

























                answered Dec 19 '18 at 17:19









                BigbearZzzBigbearZzz

                8,72621652




                8,72621652






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3046618%2fta1-tb-2-t-a-21-t-b-2-t1-t-a-b-2-is-that-true%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Ellipse (mathématiques)

                    Quarter-circle Tiles

                    Mont Emei