If we want $int_0^⋅XdM$ to be a martingale, do we need to assume $E[int_0^tX_sd[M]_s]<∞$ for all $t$...
$begingroup$
Let
$(Omega,mathcal A,operatorname P)$ be a complete probability space
$(mathcal F_t)_{tge0}$ be a complete and right-continuous filtration on $(Omega,mathcal A,operatorname P)$
$(M_t)_{tge0}$ be a real-valued continous square-integrable $mathcal F$-martingale on $(Omega,mathcal A,operatorname P)$
$(X_t)_{tge0}$ be a real-valued $mathcal F$-predictable process on $(Omega,mathcal A,operatorname P)$
- $Tin[0,infty]$
In the construction of the Itō integral process $$Xcdot M=left(int_0^tX_s:{rm d}M_sright)_{tge0}$$ as a square-integrable martingale, do we need to assume $$operatorname Eleft[int_0^t|X_s|^2:{rm d}[M]_sright]<infty;;;text{for all }tin[0,T]setminusleft{inftyright}tag1$$ or even $$operatorname Eleft[int_0^T|X_s|^2:{rm d}[M]_sright]<inftytag2?$$
Clearly, the question is trivial if $T<infty$ and the whole construction is absolutely clear to me in that case. But what if $T=infty$? Is there any reason why we should even need $(2)$?
probability-theory stochastic-processes stochastic-calculus stochastic-integrals stochastic-analysis
$endgroup$
add a comment |
$begingroup$
Let
$(Omega,mathcal A,operatorname P)$ be a complete probability space
$(mathcal F_t)_{tge0}$ be a complete and right-continuous filtration on $(Omega,mathcal A,operatorname P)$
$(M_t)_{tge0}$ be a real-valued continous square-integrable $mathcal F$-martingale on $(Omega,mathcal A,operatorname P)$
$(X_t)_{tge0}$ be a real-valued $mathcal F$-predictable process on $(Omega,mathcal A,operatorname P)$
- $Tin[0,infty]$
In the construction of the Itō integral process $$Xcdot M=left(int_0^tX_s:{rm d}M_sright)_{tge0}$$ as a square-integrable martingale, do we need to assume $$operatorname Eleft[int_0^t|X_s|^2:{rm d}[M]_sright]<infty;;;text{for all }tin[0,T]setminusleft{inftyright}tag1$$ or even $$operatorname Eleft[int_0^T|X_s|^2:{rm d}[M]_sright]<inftytag2?$$
Clearly, the question is trivial if $T<infty$ and the whole construction is absolutely clear to me in that case. But what if $T=infty$? Is there any reason why we should even need $(2)$?
probability-theory stochastic-processes stochastic-calculus stochastic-integrals stochastic-analysis
$endgroup$
$begingroup$
(1) is enough to get a martingale. If you want e.g. an $L^2$-bounded martingale then you will need (2).
$endgroup$
– saz
Dec 19 '18 at 16:31
$begingroup$
@saz So, $(2)$ if we want, for example, define $(Xcdot M)_infty$.
$endgroup$
– 0xbadf00d
Dec 19 '18 at 18:07
$begingroup$
Yes, exactly...
$endgroup$
– saz
Dec 20 '18 at 6:03
$begingroup$
@saz Could you please take a look at this question: math.stackexchange.com/questions/3048457/…
$endgroup$
– 0xbadf00d
Dec 21 '18 at 18:05
add a comment |
$begingroup$
Let
$(Omega,mathcal A,operatorname P)$ be a complete probability space
$(mathcal F_t)_{tge0}$ be a complete and right-continuous filtration on $(Omega,mathcal A,operatorname P)$
$(M_t)_{tge0}$ be a real-valued continous square-integrable $mathcal F$-martingale on $(Omega,mathcal A,operatorname P)$
$(X_t)_{tge0}$ be a real-valued $mathcal F$-predictable process on $(Omega,mathcal A,operatorname P)$
- $Tin[0,infty]$
In the construction of the Itō integral process $$Xcdot M=left(int_0^tX_s:{rm d}M_sright)_{tge0}$$ as a square-integrable martingale, do we need to assume $$operatorname Eleft[int_0^t|X_s|^2:{rm d}[M]_sright]<infty;;;text{for all }tin[0,T]setminusleft{inftyright}tag1$$ or even $$operatorname Eleft[int_0^T|X_s|^2:{rm d}[M]_sright]<inftytag2?$$
Clearly, the question is trivial if $T<infty$ and the whole construction is absolutely clear to me in that case. But what if $T=infty$? Is there any reason why we should even need $(2)$?
probability-theory stochastic-processes stochastic-calculus stochastic-integrals stochastic-analysis
$endgroup$
Let
$(Omega,mathcal A,operatorname P)$ be a complete probability space
$(mathcal F_t)_{tge0}$ be a complete and right-continuous filtration on $(Omega,mathcal A,operatorname P)$
$(M_t)_{tge0}$ be a real-valued continous square-integrable $mathcal F$-martingale on $(Omega,mathcal A,operatorname P)$
$(X_t)_{tge0}$ be a real-valued $mathcal F$-predictable process on $(Omega,mathcal A,operatorname P)$
- $Tin[0,infty]$
In the construction of the Itō integral process $$Xcdot M=left(int_0^tX_s:{rm d}M_sright)_{tge0}$$ as a square-integrable martingale, do we need to assume $$operatorname Eleft[int_0^t|X_s|^2:{rm d}[M]_sright]<infty;;;text{for all }tin[0,T]setminusleft{inftyright}tag1$$ or even $$operatorname Eleft[int_0^T|X_s|^2:{rm d}[M]_sright]<inftytag2?$$
Clearly, the question is trivial if $T<infty$ and the whole construction is absolutely clear to me in that case. But what if $T=infty$? Is there any reason why we should even need $(2)$?
probability-theory stochastic-processes stochastic-calculus stochastic-integrals stochastic-analysis
probability-theory stochastic-processes stochastic-calculus stochastic-integrals stochastic-analysis
asked Dec 19 '18 at 16:07
0xbadf00d0xbadf00d
1,97041531
1,97041531
$begingroup$
(1) is enough to get a martingale. If you want e.g. an $L^2$-bounded martingale then you will need (2).
$endgroup$
– saz
Dec 19 '18 at 16:31
$begingroup$
@saz So, $(2)$ if we want, for example, define $(Xcdot M)_infty$.
$endgroup$
– 0xbadf00d
Dec 19 '18 at 18:07
$begingroup$
Yes, exactly...
$endgroup$
– saz
Dec 20 '18 at 6:03
$begingroup$
@saz Could you please take a look at this question: math.stackexchange.com/questions/3048457/…
$endgroup$
– 0xbadf00d
Dec 21 '18 at 18:05
add a comment |
$begingroup$
(1) is enough to get a martingale. If you want e.g. an $L^2$-bounded martingale then you will need (2).
$endgroup$
– saz
Dec 19 '18 at 16:31
$begingroup$
@saz So, $(2)$ if we want, for example, define $(Xcdot M)_infty$.
$endgroup$
– 0xbadf00d
Dec 19 '18 at 18:07
$begingroup$
Yes, exactly...
$endgroup$
– saz
Dec 20 '18 at 6:03
$begingroup$
@saz Could you please take a look at this question: math.stackexchange.com/questions/3048457/…
$endgroup$
– 0xbadf00d
Dec 21 '18 at 18:05
$begingroup$
(1) is enough to get a martingale. If you want e.g. an $L^2$-bounded martingale then you will need (2).
$endgroup$
– saz
Dec 19 '18 at 16:31
$begingroup$
(1) is enough to get a martingale. If you want e.g. an $L^2$-bounded martingale then you will need (2).
$endgroup$
– saz
Dec 19 '18 at 16:31
$begingroup$
@saz So, $(2)$ if we want, for example, define $(Xcdot M)_infty$.
$endgroup$
– 0xbadf00d
Dec 19 '18 at 18:07
$begingroup$
@saz So, $(2)$ if we want, for example, define $(Xcdot M)_infty$.
$endgroup$
– 0xbadf00d
Dec 19 '18 at 18:07
$begingroup$
Yes, exactly...
$endgroup$
– saz
Dec 20 '18 at 6:03
$begingroup$
Yes, exactly...
$endgroup$
– saz
Dec 20 '18 at 6:03
$begingroup$
@saz Could you please take a look at this question: math.stackexchange.com/questions/3048457/…
$endgroup$
– 0xbadf00d
Dec 21 '18 at 18:05
$begingroup$
@saz Could you please take a look at this question: math.stackexchange.com/questions/3048457/…
$endgroup$
– 0xbadf00d
Dec 21 '18 at 18:05
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3046553%2fif-we-want-int-0%25e2%258b%2585xdm-to-be-a-martingale-do-we-need-to-assume-e-int-0tx-s%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3046553%2fif-we-want-int-0%25e2%258b%2585xdm-to-be-a-martingale-do-we-need-to-assume-e-int-0tx-s%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
(1) is enough to get a martingale. If you want e.g. an $L^2$-bounded martingale then you will need (2).
$endgroup$
– saz
Dec 19 '18 at 16:31
$begingroup$
@saz So, $(2)$ if we want, for example, define $(Xcdot M)_infty$.
$endgroup$
– 0xbadf00d
Dec 19 '18 at 18:07
$begingroup$
Yes, exactly...
$endgroup$
– saz
Dec 20 '18 at 6:03
$begingroup$
@saz Could you please take a look at this question: math.stackexchange.com/questions/3048457/…
$endgroup$
– 0xbadf00d
Dec 21 '18 at 18:05