Find the value of $Q(x)$ at $x= -1$, knowing some of its properties.
$begingroup$
Given polynomial $Q$ with real coefficients such that $Q(1)=1$ and
$$
frac{Q(2x)}{Q(x+1)}= 8 -frac{56}{x+7},
quad forall x ne -7 text{ and } Q(x+1)neq 0,.
$$
Find $Q(-1)$.
algebra-precalculus polynomials rational-functions
$endgroup$
add a comment |
$begingroup$
Given polynomial $Q$ with real coefficients such that $Q(1)=1$ and
$$
frac{Q(2x)}{Q(x+1)}= 8 -frac{56}{x+7},
quad forall x ne -7 text{ and } Q(x+1)neq 0,.
$$
Find $Q(-1)$.
algebra-precalculus polynomials rational-functions
$endgroup$
add a comment |
$begingroup$
Given polynomial $Q$ with real coefficients such that $Q(1)=1$ and
$$
frac{Q(2x)}{Q(x+1)}= 8 -frac{56}{x+7},
quad forall x ne -7 text{ and } Q(x+1)neq 0,.
$$
Find $Q(-1)$.
algebra-precalculus polynomials rational-functions
$endgroup$
Given polynomial $Q$ with real coefficients such that $Q(1)=1$ and
$$
frac{Q(2x)}{Q(x+1)}= 8 -frac{56}{x+7},
quad forall x ne -7 text{ and } Q(x+1)neq 0,.
$$
Find $Q(-1)$.
algebra-precalculus polynomials rational-functions
algebra-precalculus polynomials rational-functions
edited Dec 10 '18 at 23:24
Batominovski
1
1
asked Dec 10 '18 at 22:43
James CaldyJames Caldy
191
191
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Rewrite the equation as
$$(x+7),Q(2x)=8x,Q(x+1),.tag{*}$$
Thus, $2xmid Q(2x)$ or $xmid Q(x)$, and $x+7mid Q(x+1)$ or $x+6mid Q(x)$. That is, $Q(x)=x(x+6),R(x)$ for some polynomial $R(x)$. Show that
$$(x+3),R(2x)=2(x+1),R(x+1),.$$
Ergo, $2x+2mid R(2x)$ or $x+2mid R(x)$, and $x+3mid R(x+1)$ or $x+2mid R(x)$. Thence, $R(x)=(x+2),S(x)$ for some polynomial $S(x)$. Then, prove that
$$S(2x)=S(x+1),,$$
which implies that $S(x)$ is a constant polynomial. Therefore,
$$Q(x)=kx(x+2)(x+6)$$
for some constant $k$.
You can also notice that $limlimits_{xtoinfty},dfrac{Q(2x)}{Q(x+1)}=8=left(dfrac{2}{1}right)^3$, so $Q(x)$ must be cubic. If you have no other ideas, then you can try setting $Q(x)=ax^3+bx^2+cx+d$ for some constants $a,b,c,d$. to see how things work out. There are some easily observable results. Plugging in $x:=0$ into (*), you can see that $Q(0)=0$, so $d=0$. With $x:=-7$ in (*), we have $Q(-6)=0$, making $$a(-6)^3+b(-6)^2+c(-6)=0,,$$ and so on.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3034597%2ffind-the-value-of-qx-at-x-1-knowing-some-of-its-properties%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Rewrite the equation as
$$(x+7),Q(2x)=8x,Q(x+1),.tag{*}$$
Thus, $2xmid Q(2x)$ or $xmid Q(x)$, and $x+7mid Q(x+1)$ or $x+6mid Q(x)$. That is, $Q(x)=x(x+6),R(x)$ for some polynomial $R(x)$. Show that
$$(x+3),R(2x)=2(x+1),R(x+1),.$$
Ergo, $2x+2mid R(2x)$ or $x+2mid R(x)$, and $x+3mid R(x+1)$ or $x+2mid R(x)$. Thence, $R(x)=(x+2),S(x)$ for some polynomial $S(x)$. Then, prove that
$$S(2x)=S(x+1),,$$
which implies that $S(x)$ is a constant polynomial. Therefore,
$$Q(x)=kx(x+2)(x+6)$$
for some constant $k$.
You can also notice that $limlimits_{xtoinfty},dfrac{Q(2x)}{Q(x+1)}=8=left(dfrac{2}{1}right)^3$, so $Q(x)$ must be cubic. If you have no other ideas, then you can try setting $Q(x)=ax^3+bx^2+cx+d$ for some constants $a,b,c,d$. to see how things work out. There are some easily observable results. Plugging in $x:=0$ into (*), you can see that $Q(0)=0$, so $d=0$. With $x:=-7$ in (*), we have $Q(-6)=0$, making $$a(-6)^3+b(-6)^2+c(-6)=0,,$$ and so on.
$endgroup$
add a comment |
$begingroup$
Rewrite the equation as
$$(x+7),Q(2x)=8x,Q(x+1),.tag{*}$$
Thus, $2xmid Q(2x)$ or $xmid Q(x)$, and $x+7mid Q(x+1)$ or $x+6mid Q(x)$. That is, $Q(x)=x(x+6),R(x)$ for some polynomial $R(x)$. Show that
$$(x+3),R(2x)=2(x+1),R(x+1),.$$
Ergo, $2x+2mid R(2x)$ or $x+2mid R(x)$, and $x+3mid R(x+1)$ or $x+2mid R(x)$. Thence, $R(x)=(x+2),S(x)$ for some polynomial $S(x)$. Then, prove that
$$S(2x)=S(x+1),,$$
which implies that $S(x)$ is a constant polynomial. Therefore,
$$Q(x)=kx(x+2)(x+6)$$
for some constant $k$.
You can also notice that $limlimits_{xtoinfty},dfrac{Q(2x)}{Q(x+1)}=8=left(dfrac{2}{1}right)^3$, so $Q(x)$ must be cubic. If you have no other ideas, then you can try setting $Q(x)=ax^3+bx^2+cx+d$ for some constants $a,b,c,d$. to see how things work out. There are some easily observable results. Plugging in $x:=0$ into (*), you can see that $Q(0)=0$, so $d=0$. With $x:=-7$ in (*), we have $Q(-6)=0$, making $$a(-6)^3+b(-6)^2+c(-6)=0,,$$ and so on.
$endgroup$
add a comment |
$begingroup$
Rewrite the equation as
$$(x+7),Q(2x)=8x,Q(x+1),.tag{*}$$
Thus, $2xmid Q(2x)$ or $xmid Q(x)$, and $x+7mid Q(x+1)$ or $x+6mid Q(x)$. That is, $Q(x)=x(x+6),R(x)$ for some polynomial $R(x)$. Show that
$$(x+3),R(2x)=2(x+1),R(x+1),.$$
Ergo, $2x+2mid R(2x)$ or $x+2mid R(x)$, and $x+3mid R(x+1)$ or $x+2mid R(x)$. Thence, $R(x)=(x+2),S(x)$ for some polynomial $S(x)$. Then, prove that
$$S(2x)=S(x+1),,$$
which implies that $S(x)$ is a constant polynomial. Therefore,
$$Q(x)=kx(x+2)(x+6)$$
for some constant $k$.
You can also notice that $limlimits_{xtoinfty},dfrac{Q(2x)}{Q(x+1)}=8=left(dfrac{2}{1}right)^3$, so $Q(x)$ must be cubic. If you have no other ideas, then you can try setting $Q(x)=ax^3+bx^2+cx+d$ for some constants $a,b,c,d$. to see how things work out. There are some easily observable results. Plugging in $x:=0$ into (*), you can see that $Q(0)=0$, so $d=0$. With $x:=-7$ in (*), we have $Q(-6)=0$, making $$a(-6)^3+b(-6)^2+c(-6)=0,,$$ and so on.
$endgroup$
Rewrite the equation as
$$(x+7),Q(2x)=8x,Q(x+1),.tag{*}$$
Thus, $2xmid Q(2x)$ or $xmid Q(x)$, and $x+7mid Q(x+1)$ or $x+6mid Q(x)$. That is, $Q(x)=x(x+6),R(x)$ for some polynomial $R(x)$. Show that
$$(x+3),R(2x)=2(x+1),R(x+1),.$$
Ergo, $2x+2mid R(2x)$ or $x+2mid R(x)$, and $x+3mid R(x+1)$ or $x+2mid R(x)$. Thence, $R(x)=(x+2),S(x)$ for some polynomial $S(x)$. Then, prove that
$$S(2x)=S(x+1),,$$
which implies that $S(x)$ is a constant polynomial. Therefore,
$$Q(x)=kx(x+2)(x+6)$$
for some constant $k$.
You can also notice that $limlimits_{xtoinfty},dfrac{Q(2x)}{Q(x+1)}=8=left(dfrac{2}{1}right)^3$, so $Q(x)$ must be cubic. If you have no other ideas, then you can try setting $Q(x)=ax^3+bx^2+cx+d$ for some constants $a,b,c,d$. to see how things work out. There are some easily observable results. Plugging in $x:=0$ into (*), you can see that $Q(0)=0$, so $d=0$. With $x:=-7$ in (*), we have $Q(-6)=0$, making $$a(-6)^3+b(-6)^2+c(-6)=0,,$$ and so on.
edited Dec 10 '18 at 23:20
answered Dec 10 '18 at 23:13
BatominovskiBatominovski
1
1
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3034597%2ffind-the-value-of-qx-at-x-1-knowing-some-of-its-properties%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown