Show: $lim_{nrightarrow infty} left|int_{1}^{e}left[ln(x)right]^n:dx right|= 0 $












3












$begingroup$


This is probably an unremarkable result, but I was curious about exploring the following family of definite integrals to see what asymptotic behaviour it as as $n rightarrow infty$



$$I_n = int_{1}^{e}left[ln(x)right]^n:dx mbox{ for } n in mathbb{N}$$



The method I took:



Employ integration by parts:



begin{align}
v'(x) &= 1 & u(x) &= left[ln(x)right]^n \
v(x) &= x & u'(x) &= nleft[ln(x)right]^{n - 1}frac{1}{x}
end{align}



Thus,



begin{align}
I_n &= int_{1}^{e}left[ln(x)right]^n:dx = x cdot left[ln(x)right]^n Big|_{1}^{e} - int_{1}^{e} x cdot nleft[ln(x)right]^{n - 1}frac{1}{x} \
&= e - nint_{1}^{e}left[ln(x)right]^{n - 1}:dx
end{align}



Thus,



begin{equation}
I_n = e - nI_{n - 1}
end{equation}



Where



begin{equation}
I_1 = int_{1}^{e} ln(x):dx = xleft(ln(x) - 1right)Big|_{1}^{e} = 1
end{equation}



This yields the solution:



begin{align}
I_n &= n!left[(-1)^{n - 1} + esum_{i = 0}^{n - 2} frac{(-1)^i}{(n - i)!} right] = n!left(-1right)^nleft[-1 + esum_{i = 2}^{n } frac{(-1)^i}{i!} right] \
&= n!left(-1right)^nleft[-1 + esum_{i = 0}^{n } frac{(-1)^i}{i!} right]
end{align}



We see that:



begin{equation}
lim_{nrightarrow infty} I_n = n! (-1)^n left( -1 + ecdot e^{-1} right) = 0
end{equation}



Or



begin{equation}
lim_{nrightarrow infty}int_{1}^{e}left[ln(x)right]^n:dx = 0
end{equation}



I was wondering if I could have a more technical eye have a look over this to see if the result I've obtained is correct.



Edit - Final result was incorrect and now corrected as per Song's pickup.










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Your mistake is $-1+ecdot e^{-1} = 1$. It should be $0$. Actually, by dominated convergence theorem, $int_1^e (log x)^n dx to 0$. In the same spirit, we can show $int_1^A (log x)^n dx = mathcal{o}((log A)^n)$.
    $endgroup$
    – Song
    Dec 10 '18 at 23:22












  • $begingroup$
    Hi @Song - Yes, indeed- Thank you very much. I will edit my post.
    $endgroup$
    – DavidG
    Dec 10 '18 at 23:23






  • 2




    $begingroup$
    For a more direct approach leading to the same optimal result, note that, by concavity of the logarithm, for every $1<x<e$, $ln x<e^{-1}x$ hence $$I_n<e^{-n}int_1^ex^ndx<e^{-n}int_0^ex^ndx=frac e{n+1}$$
    $endgroup$
    – Did
    Dec 10 '18 at 23:39
















3












$begingroup$


This is probably an unremarkable result, but I was curious about exploring the following family of definite integrals to see what asymptotic behaviour it as as $n rightarrow infty$



$$I_n = int_{1}^{e}left[ln(x)right]^n:dx mbox{ for } n in mathbb{N}$$



The method I took:



Employ integration by parts:



begin{align}
v'(x) &= 1 & u(x) &= left[ln(x)right]^n \
v(x) &= x & u'(x) &= nleft[ln(x)right]^{n - 1}frac{1}{x}
end{align}



Thus,



begin{align}
I_n &= int_{1}^{e}left[ln(x)right]^n:dx = x cdot left[ln(x)right]^n Big|_{1}^{e} - int_{1}^{e} x cdot nleft[ln(x)right]^{n - 1}frac{1}{x} \
&= e - nint_{1}^{e}left[ln(x)right]^{n - 1}:dx
end{align}



Thus,



begin{equation}
I_n = e - nI_{n - 1}
end{equation}



Where



begin{equation}
I_1 = int_{1}^{e} ln(x):dx = xleft(ln(x) - 1right)Big|_{1}^{e} = 1
end{equation}



This yields the solution:



begin{align}
I_n &= n!left[(-1)^{n - 1} + esum_{i = 0}^{n - 2} frac{(-1)^i}{(n - i)!} right] = n!left(-1right)^nleft[-1 + esum_{i = 2}^{n } frac{(-1)^i}{i!} right] \
&= n!left(-1right)^nleft[-1 + esum_{i = 0}^{n } frac{(-1)^i}{i!} right]
end{align}



We see that:



begin{equation}
lim_{nrightarrow infty} I_n = n! (-1)^n left( -1 + ecdot e^{-1} right) = 0
end{equation}



Or



begin{equation}
lim_{nrightarrow infty}int_{1}^{e}left[ln(x)right]^n:dx = 0
end{equation}



I was wondering if I could have a more technical eye have a look over this to see if the result I've obtained is correct.



Edit - Final result was incorrect and now corrected as per Song's pickup.










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Your mistake is $-1+ecdot e^{-1} = 1$. It should be $0$. Actually, by dominated convergence theorem, $int_1^e (log x)^n dx to 0$. In the same spirit, we can show $int_1^A (log x)^n dx = mathcal{o}((log A)^n)$.
    $endgroup$
    – Song
    Dec 10 '18 at 23:22












  • $begingroup$
    Hi @Song - Yes, indeed- Thank you very much. I will edit my post.
    $endgroup$
    – DavidG
    Dec 10 '18 at 23:23






  • 2




    $begingroup$
    For a more direct approach leading to the same optimal result, note that, by concavity of the logarithm, for every $1<x<e$, $ln x<e^{-1}x$ hence $$I_n<e^{-n}int_1^ex^ndx<e^{-n}int_0^ex^ndx=frac e{n+1}$$
    $endgroup$
    – Did
    Dec 10 '18 at 23:39














3












3








3





$begingroup$


This is probably an unremarkable result, but I was curious about exploring the following family of definite integrals to see what asymptotic behaviour it as as $n rightarrow infty$



$$I_n = int_{1}^{e}left[ln(x)right]^n:dx mbox{ for } n in mathbb{N}$$



The method I took:



Employ integration by parts:



begin{align}
v'(x) &= 1 & u(x) &= left[ln(x)right]^n \
v(x) &= x & u'(x) &= nleft[ln(x)right]^{n - 1}frac{1}{x}
end{align}



Thus,



begin{align}
I_n &= int_{1}^{e}left[ln(x)right]^n:dx = x cdot left[ln(x)right]^n Big|_{1}^{e} - int_{1}^{e} x cdot nleft[ln(x)right]^{n - 1}frac{1}{x} \
&= e - nint_{1}^{e}left[ln(x)right]^{n - 1}:dx
end{align}



Thus,



begin{equation}
I_n = e - nI_{n - 1}
end{equation}



Where



begin{equation}
I_1 = int_{1}^{e} ln(x):dx = xleft(ln(x) - 1right)Big|_{1}^{e} = 1
end{equation}



This yields the solution:



begin{align}
I_n &= n!left[(-1)^{n - 1} + esum_{i = 0}^{n - 2} frac{(-1)^i}{(n - i)!} right] = n!left(-1right)^nleft[-1 + esum_{i = 2}^{n } frac{(-1)^i}{i!} right] \
&= n!left(-1right)^nleft[-1 + esum_{i = 0}^{n } frac{(-1)^i}{i!} right]
end{align}



We see that:



begin{equation}
lim_{nrightarrow infty} I_n = n! (-1)^n left( -1 + ecdot e^{-1} right) = 0
end{equation}



Or



begin{equation}
lim_{nrightarrow infty}int_{1}^{e}left[ln(x)right]^n:dx = 0
end{equation}



I was wondering if I could have a more technical eye have a look over this to see if the result I've obtained is correct.



Edit - Final result was incorrect and now corrected as per Song's pickup.










share|cite|improve this question











$endgroup$




This is probably an unremarkable result, but I was curious about exploring the following family of definite integrals to see what asymptotic behaviour it as as $n rightarrow infty$



$$I_n = int_{1}^{e}left[ln(x)right]^n:dx mbox{ for } n in mathbb{N}$$



The method I took:



Employ integration by parts:



begin{align}
v'(x) &= 1 & u(x) &= left[ln(x)right]^n \
v(x) &= x & u'(x) &= nleft[ln(x)right]^{n - 1}frac{1}{x}
end{align}



Thus,



begin{align}
I_n &= int_{1}^{e}left[ln(x)right]^n:dx = x cdot left[ln(x)right]^n Big|_{1}^{e} - int_{1}^{e} x cdot nleft[ln(x)right]^{n - 1}frac{1}{x} \
&= e - nint_{1}^{e}left[ln(x)right]^{n - 1}:dx
end{align}



Thus,



begin{equation}
I_n = e - nI_{n - 1}
end{equation}



Where



begin{equation}
I_1 = int_{1}^{e} ln(x):dx = xleft(ln(x) - 1right)Big|_{1}^{e} = 1
end{equation}



This yields the solution:



begin{align}
I_n &= n!left[(-1)^{n - 1} + esum_{i = 0}^{n - 2} frac{(-1)^i}{(n - i)!} right] = n!left(-1right)^nleft[-1 + esum_{i = 2}^{n } frac{(-1)^i}{i!} right] \
&= n!left(-1right)^nleft[-1 + esum_{i = 0}^{n } frac{(-1)^i}{i!} right]
end{align}



We see that:



begin{equation}
lim_{nrightarrow infty} I_n = n! (-1)^n left( -1 + ecdot e^{-1} right) = 0
end{equation}



Or



begin{equation}
lim_{nrightarrow infty}int_{1}^{e}left[ln(x)right]^n:dx = 0
end{equation}



I was wondering if I could have a more technical eye have a look over this to see if the result I've obtained is correct.



Edit - Final result was incorrect and now corrected as per Song's pickup.







integration limits proof-verification definite-integrals






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 10 '18 at 23:24







DavidG

















asked Dec 10 '18 at 23:17









DavidGDavidG

2,2641721




2,2641721








  • 1




    $begingroup$
    Your mistake is $-1+ecdot e^{-1} = 1$. It should be $0$. Actually, by dominated convergence theorem, $int_1^e (log x)^n dx to 0$. In the same spirit, we can show $int_1^A (log x)^n dx = mathcal{o}((log A)^n)$.
    $endgroup$
    – Song
    Dec 10 '18 at 23:22












  • $begingroup$
    Hi @Song - Yes, indeed- Thank you very much. I will edit my post.
    $endgroup$
    – DavidG
    Dec 10 '18 at 23:23






  • 2




    $begingroup$
    For a more direct approach leading to the same optimal result, note that, by concavity of the logarithm, for every $1<x<e$, $ln x<e^{-1}x$ hence $$I_n<e^{-n}int_1^ex^ndx<e^{-n}int_0^ex^ndx=frac e{n+1}$$
    $endgroup$
    – Did
    Dec 10 '18 at 23:39














  • 1




    $begingroup$
    Your mistake is $-1+ecdot e^{-1} = 1$. It should be $0$. Actually, by dominated convergence theorem, $int_1^e (log x)^n dx to 0$. In the same spirit, we can show $int_1^A (log x)^n dx = mathcal{o}((log A)^n)$.
    $endgroup$
    – Song
    Dec 10 '18 at 23:22












  • $begingroup$
    Hi @Song - Yes, indeed- Thank you very much. I will edit my post.
    $endgroup$
    – DavidG
    Dec 10 '18 at 23:23






  • 2




    $begingroup$
    For a more direct approach leading to the same optimal result, note that, by concavity of the logarithm, for every $1<x<e$, $ln x<e^{-1}x$ hence $$I_n<e^{-n}int_1^ex^ndx<e^{-n}int_0^ex^ndx=frac e{n+1}$$
    $endgroup$
    – Did
    Dec 10 '18 at 23:39








1




1




$begingroup$
Your mistake is $-1+ecdot e^{-1} = 1$. It should be $0$. Actually, by dominated convergence theorem, $int_1^e (log x)^n dx to 0$. In the same spirit, we can show $int_1^A (log x)^n dx = mathcal{o}((log A)^n)$.
$endgroup$
– Song
Dec 10 '18 at 23:22






$begingroup$
Your mistake is $-1+ecdot e^{-1} = 1$. It should be $0$. Actually, by dominated convergence theorem, $int_1^e (log x)^n dx to 0$. In the same spirit, we can show $int_1^A (log x)^n dx = mathcal{o}((log A)^n)$.
$endgroup$
– Song
Dec 10 '18 at 23:22














$begingroup$
Hi @Song - Yes, indeed- Thank you very much. I will edit my post.
$endgroup$
– DavidG
Dec 10 '18 at 23:23




$begingroup$
Hi @Song - Yes, indeed- Thank you very much. I will edit my post.
$endgroup$
– DavidG
Dec 10 '18 at 23:23




2




2




$begingroup$
For a more direct approach leading to the same optimal result, note that, by concavity of the logarithm, for every $1<x<e$, $ln x<e^{-1}x$ hence $$I_n<e^{-n}int_1^ex^ndx<e^{-n}int_0^ex^ndx=frac e{n+1}$$
$endgroup$
– Did
Dec 10 '18 at 23:39




$begingroup$
For a more direct approach leading to the same optimal result, note that, by concavity of the logarithm, for every $1<x<e$, $ln x<e^{-1}x$ hence $$I_n<e^{-n}int_1^ex^ndx<e^{-n}int_0^ex^ndx=frac e{n+1}$$
$endgroup$
– Did
Dec 10 '18 at 23:39










0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3034629%2fshow-lim-n-rightarrow-infty-left-int-1e-left-lnx-rightn-dx-r%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3034629%2fshow-lim-n-rightarrow-infty-left-int-1e-left-lnx-rightn-dx-r%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Ellipse (mathématiques)

Quarter-circle Tiles

Mont Emei