Show: $lim_{nrightarrow infty} left|int_{1}^{e}left[ln(x)right]^n:dx right|= 0 $
$begingroup$
This is probably an unremarkable result, but I was curious about exploring the following family of definite integrals to see what asymptotic behaviour it as as $n rightarrow infty$
$$I_n = int_{1}^{e}left[ln(x)right]^n:dx mbox{ for } n in mathbb{N}$$
The method I took:
Employ integration by parts:
begin{align}
v'(x) &= 1 & u(x) &= left[ln(x)right]^n \
v(x) &= x & u'(x) &= nleft[ln(x)right]^{n - 1}frac{1}{x}
end{align}
Thus,
begin{align}
I_n &= int_{1}^{e}left[ln(x)right]^n:dx = x cdot left[ln(x)right]^n Big|_{1}^{e} - int_{1}^{e} x cdot nleft[ln(x)right]^{n - 1}frac{1}{x} \
&= e - nint_{1}^{e}left[ln(x)right]^{n - 1}:dx
end{align}
Thus,
begin{equation}
I_n = e - nI_{n - 1}
end{equation}
Where
begin{equation}
I_1 = int_{1}^{e} ln(x):dx = xleft(ln(x) - 1right)Big|_{1}^{e} = 1
end{equation}
This yields the solution:
begin{align}
I_n &= n!left[(-1)^{n - 1} + esum_{i = 0}^{n - 2} frac{(-1)^i}{(n - i)!} right] = n!left(-1right)^nleft[-1 + esum_{i = 2}^{n } frac{(-1)^i}{i!} right] \
&= n!left(-1right)^nleft[-1 + esum_{i = 0}^{n } frac{(-1)^i}{i!} right]
end{align}
We see that:
begin{equation}
lim_{nrightarrow infty} I_n = n! (-1)^n left( -1 + ecdot e^{-1} right) = 0
end{equation}
Or
begin{equation}
lim_{nrightarrow infty}int_{1}^{e}left[ln(x)right]^n:dx = 0
end{equation}
I was wondering if I could have a more technical eye have a look over this to see if the result I've obtained is correct.
Edit - Final result was incorrect and now corrected as per Song's pickup.
integration limits proof-verification definite-integrals
$endgroup$
add a comment |
$begingroup$
This is probably an unremarkable result, but I was curious about exploring the following family of definite integrals to see what asymptotic behaviour it as as $n rightarrow infty$
$$I_n = int_{1}^{e}left[ln(x)right]^n:dx mbox{ for } n in mathbb{N}$$
The method I took:
Employ integration by parts:
begin{align}
v'(x) &= 1 & u(x) &= left[ln(x)right]^n \
v(x) &= x & u'(x) &= nleft[ln(x)right]^{n - 1}frac{1}{x}
end{align}
Thus,
begin{align}
I_n &= int_{1}^{e}left[ln(x)right]^n:dx = x cdot left[ln(x)right]^n Big|_{1}^{e} - int_{1}^{e} x cdot nleft[ln(x)right]^{n - 1}frac{1}{x} \
&= e - nint_{1}^{e}left[ln(x)right]^{n - 1}:dx
end{align}
Thus,
begin{equation}
I_n = e - nI_{n - 1}
end{equation}
Where
begin{equation}
I_1 = int_{1}^{e} ln(x):dx = xleft(ln(x) - 1right)Big|_{1}^{e} = 1
end{equation}
This yields the solution:
begin{align}
I_n &= n!left[(-1)^{n - 1} + esum_{i = 0}^{n - 2} frac{(-1)^i}{(n - i)!} right] = n!left(-1right)^nleft[-1 + esum_{i = 2}^{n } frac{(-1)^i}{i!} right] \
&= n!left(-1right)^nleft[-1 + esum_{i = 0}^{n } frac{(-1)^i}{i!} right]
end{align}
We see that:
begin{equation}
lim_{nrightarrow infty} I_n = n! (-1)^n left( -1 + ecdot e^{-1} right) = 0
end{equation}
Or
begin{equation}
lim_{nrightarrow infty}int_{1}^{e}left[ln(x)right]^n:dx = 0
end{equation}
I was wondering if I could have a more technical eye have a look over this to see if the result I've obtained is correct.
Edit - Final result was incorrect and now corrected as per Song's pickup.
integration limits proof-verification definite-integrals
$endgroup$
1
$begingroup$
Your mistake is $-1+ecdot e^{-1} = 1$. It should be $0$. Actually, by dominated convergence theorem, $int_1^e (log x)^n dx to 0$. In the same spirit, we can show $int_1^A (log x)^n dx = mathcal{o}((log A)^n)$.
$endgroup$
– Song
Dec 10 '18 at 23:22
$begingroup$
Hi @Song - Yes, indeed- Thank you very much. I will edit my post.
$endgroup$
– DavidG
Dec 10 '18 at 23:23
2
$begingroup$
For a more direct approach leading to the same optimal result, note that, by concavity of the logarithm, for every $1<x<e$, $ln x<e^{-1}x$ hence $$I_n<e^{-n}int_1^ex^ndx<e^{-n}int_0^ex^ndx=frac e{n+1}$$
$endgroup$
– Did
Dec 10 '18 at 23:39
add a comment |
$begingroup$
This is probably an unremarkable result, but I was curious about exploring the following family of definite integrals to see what asymptotic behaviour it as as $n rightarrow infty$
$$I_n = int_{1}^{e}left[ln(x)right]^n:dx mbox{ for } n in mathbb{N}$$
The method I took:
Employ integration by parts:
begin{align}
v'(x) &= 1 & u(x) &= left[ln(x)right]^n \
v(x) &= x & u'(x) &= nleft[ln(x)right]^{n - 1}frac{1}{x}
end{align}
Thus,
begin{align}
I_n &= int_{1}^{e}left[ln(x)right]^n:dx = x cdot left[ln(x)right]^n Big|_{1}^{e} - int_{1}^{e} x cdot nleft[ln(x)right]^{n - 1}frac{1}{x} \
&= e - nint_{1}^{e}left[ln(x)right]^{n - 1}:dx
end{align}
Thus,
begin{equation}
I_n = e - nI_{n - 1}
end{equation}
Where
begin{equation}
I_1 = int_{1}^{e} ln(x):dx = xleft(ln(x) - 1right)Big|_{1}^{e} = 1
end{equation}
This yields the solution:
begin{align}
I_n &= n!left[(-1)^{n - 1} + esum_{i = 0}^{n - 2} frac{(-1)^i}{(n - i)!} right] = n!left(-1right)^nleft[-1 + esum_{i = 2}^{n } frac{(-1)^i}{i!} right] \
&= n!left(-1right)^nleft[-1 + esum_{i = 0}^{n } frac{(-1)^i}{i!} right]
end{align}
We see that:
begin{equation}
lim_{nrightarrow infty} I_n = n! (-1)^n left( -1 + ecdot e^{-1} right) = 0
end{equation}
Or
begin{equation}
lim_{nrightarrow infty}int_{1}^{e}left[ln(x)right]^n:dx = 0
end{equation}
I was wondering if I could have a more technical eye have a look over this to see if the result I've obtained is correct.
Edit - Final result was incorrect and now corrected as per Song's pickup.
integration limits proof-verification definite-integrals
$endgroup$
This is probably an unremarkable result, but I was curious about exploring the following family of definite integrals to see what asymptotic behaviour it as as $n rightarrow infty$
$$I_n = int_{1}^{e}left[ln(x)right]^n:dx mbox{ for } n in mathbb{N}$$
The method I took:
Employ integration by parts:
begin{align}
v'(x) &= 1 & u(x) &= left[ln(x)right]^n \
v(x) &= x & u'(x) &= nleft[ln(x)right]^{n - 1}frac{1}{x}
end{align}
Thus,
begin{align}
I_n &= int_{1}^{e}left[ln(x)right]^n:dx = x cdot left[ln(x)right]^n Big|_{1}^{e} - int_{1}^{e} x cdot nleft[ln(x)right]^{n - 1}frac{1}{x} \
&= e - nint_{1}^{e}left[ln(x)right]^{n - 1}:dx
end{align}
Thus,
begin{equation}
I_n = e - nI_{n - 1}
end{equation}
Where
begin{equation}
I_1 = int_{1}^{e} ln(x):dx = xleft(ln(x) - 1right)Big|_{1}^{e} = 1
end{equation}
This yields the solution:
begin{align}
I_n &= n!left[(-1)^{n - 1} + esum_{i = 0}^{n - 2} frac{(-1)^i}{(n - i)!} right] = n!left(-1right)^nleft[-1 + esum_{i = 2}^{n } frac{(-1)^i}{i!} right] \
&= n!left(-1right)^nleft[-1 + esum_{i = 0}^{n } frac{(-1)^i}{i!} right]
end{align}
We see that:
begin{equation}
lim_{nrightarrow infty} I_n = n! (-1)^n left( -1 + ecdot e^{-1} right) = 0
end{equation}
Or
begin{equation}
lim_{nrightarrow infty}int_{1}^{e}left[ln(x)right]^n:dx = 0
end{equation}
I was wondering if I could have a more technical eye have a look over this to see if the result I've obtained is correct.
Edit - Final result was incorrect and now corrected as per Song's pickup.
integration limits proof-verification definite-integrals
integration limits proof-verification definite-integrals
edited Dec 10 '18 at 23:24
DavidG
asked Dec 10 '18 at 23:17
DavidGDavidG
2,2641721
2,2641721
1
$begingroup$
Your mistake is $-1+ecdot e^{-1} = 1$. It should be $0$. Actually, by dominated convergence theorem, $int_1^e (log x)^n dx to 0$. In the same spirit, we can show $int_1^A (log x)^n dx = mathcal{o}((log A)^n)$.
$endgroup$
– Song
Dec 10 '18 at 23:22
$begingroup$
Hi @Song - Yes, indeed- Thank you very much. I will edit my post.
$endgroup$
– DavidG
Dec 10 '18 at 23:23
2
$begingroup$
For a more direct approach leading to the same optimal result, note that, by concavity of the logarithm, for every $1<x<e$, $ln x<e^{-1}x$ hence $$I_n<e^{-n}int_1^ex^ndx<e^{-n}int_0^ex^ndx=frac e{n+1}$$
$endgroup$
– Did
Dec 10 '18 at 23:39
add a comment |
1
$begingroup$
Your mistake is $-1+ecdot e^{-1} = 1$. It should be $0$. Actually, by dominated convergence theorem, $int_1^e (log x)^n dx to 0$. In the same spirit, we can show $int_1^A (log x)^n dx = mathcal{o}((log A)^n)$.
$endgroup$
– Song
Dec 10 '18 at 23:22
$begingroup$
Hi @Song - Yes, indeed- Thank you very much. I will edit my post.
$endgroup$
– DavidG
Dec 10 '18 at 23:23
2
$begingroup$
For a more direct approach leading to the same optimal result, note that, by concavity of the logarithm, for every $1<x<e$, $ln x<e^{-1}x$ hence $$I_n<e^{-n}int_1^ex^ndx<e^{-n}int_0^ex^ndx=frac e{n+1}$$
$endgroup$
– Did
Dec 10 '18 at 23:39
1
1
$begingroup$
Your mistake is $-1+ecdot e^{-1} = 1$. It should be $0$. Actually, by dominated convergence theorem, $int_1^e (log x)^n dx to 0$. In the same spirit, we can show $int_1^A (log x)^n dx = mathcal{o}((log A)^n)$.
$endgroup$
– Song
Dec 10 '18 at 23:22
$begingroup$
Your mistake is $-1+ecdot e^{-1} = 1$. It should be $0$. Actually, by dominated convergence theorem, $int_1^e (log x)^n dx to 0$. In the same spirit, we can show $int_1^A (log x)^n dx = mathcal{o}((log A)^n)$.
$endgroup$
– Song
Dec 10 '18 at 23:22
$begingroup$
Hi @Song - Yes, indeed- Thank you very much. I will edit my post.
$endgroup$
– DavidG
Dec 10 '18 at 23:23
$begingroup$
Hi @Song - Yes, indeed- Thank you very much. I will edit my post.
$endgroup$
– DavidG
Dec 10 '18 at 23:23
2
2
$begingroup$
For a more direct approach leading to the same optimal result, note that, by concavity of the logarithm, for every $1<x<e$, $ln x<e^{-1}x$ hence $$I_n<e^{-n}int_1^ex^ndx<e^{-n}int_0^ex^ndx=frac e{n+1}$$
$endgroup$
– Did
Dec 10 '18 at 23:39
$begingroup$
For a more direct approach leading to the same optimal result, note that, by concavity of the logarithm, for every $1<x<e$, $ln x<e^{-1}x$ hence $$I_n<e^{-n}int_1^ex^ndx<e^{-n}int_0^ex^ndx=frac e{n+1}$$
$endgroup$
– Did
Dec 10 '18 at 23:39
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3034629%2fshow-lim-n-rightarrow-infty-left-int-1e-left-lnx-rightn-dx-r%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3034629%2fshow-lim-n-rightarrow-infty-left-int-1e-left-lnx-rightn-dx-r%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
Your mistake is $-1+ecdot e^{-1} = 1$. It should be $0$. Actually, by dominated convergence theorem, $int_1^e (log x)^n dx to 0$. In the same spirit, we can show $int_1^A (log x)^n dx = mathcal{o}((log A)^n)$.
$endgroup$
– Song
Dec 10 '18 at 23:22
$begingroup$
Hi @Song - Yes, indeed- Thank you very much. I will edit my post.
$endgroup$
– DavidG
Dec 10 '18 at 23:23
2
$begingroup$
For a more direct approach leading to the same optimal result, note that, by concavity of the logarithm, for every $1<x<e$, $ln x<e^{-1}x$ hence $$I_n<e^{-n}int_1^ex^ndx<e^{-n}int_0^ex^ndx=frac e{n+1}$$
$endgroup$
– Did
Dec 10 '18 at 23:39