Prove that $Graph (f)=bigcap_{ninmathbb N}bigcup_{iinmathbb Z}f^{-1}([frac{i}{2^n},frac{i+1}{2^n}))times...
$begingroup$
Let $f:mathbb Rlongrightarrow mathbb R$ a funcion. I try to prove that $$text{Graph}(f)=bigcap_{ninmathbb N}bigcup_{iinmathbb Z}f^{-1}left(left[frac{i}{2^n},frac{i+1}{2^n}right)right)times left[frac{i}{2^n},frac{i+1}{2^n}right),$$
but I have difficulty to prove the $supset$ inclusion. So let $$(x,y)in bigcap_{ninmathbb N}bigcup_{iinmathbb Z}f^{-1}left(left[frac{i}{2^n},frac{i+1}{2^n}right)right)times left[frac{i}{2^n},frac{i+1}{2^n}right),$$
then, for all $n$, there is $i_n$ s.t. $(x,y)in f^{-1}left(left[frac{i_n}{2^n},frac{i_n+1}{2^n}right)right)times left[frac{i_n}{2^n},frac{i_n+1}{2^n}right)$. In particular, $f(x)in left[frac{i_n}{2^n},frac{i_n+1}{2^n}right)$ for all $n$, i.e. $f(x)=bigcap_{ninmathbb N}left[frac{i_n}{2^n},frac{i_n+1}{2^n}right)$. Now, I would like to prove that $$bigcap_{ninmathbb N}left[frac{i_n}{2^n},frac{i_n+1}{2^n}right)={*},$$
is a singleton, but I can't.
measure-theory
$endgroup$
add a comment |
$begingroup$
Let $f:mathbb Rlongrightarrow mathbb R$ a funcion. I try to prove that $$text{Graph}(f)=bigcap_{ninmathbb N}bigcup_{iinmathbb Z}f^{-1}left(left[frac{i}{2^n},frac{i+1}{2^n}right)right)times left[frac{i}{2^n},frac{i+1}{2^n}right),$$
but I have difficulty to prove the $supset$ inclusion. So let $$(x,y)in bigcap_{ninmathbb N}bigcup_{iinmathbb Z}f^{-1}left(left[frac{i}{2^n},frac{i+1}{2^n}right)right)times left[frac{i}{2^n},frac{i+1}{2^n}right),$$
then, for all $n$, there is $i_n$ s.t. $(x,y)in f^{-1}left(left[frac{i_n}{2^n},frac{i_n+1}{2^n}right)right)times left[frac{i_n}{2^n},frac{i_n+1}{2^n}right)$. In particular, $f(x)in left[frac{i_n}{2^n},frac{i_n+1}{2^n}right)$ for all $n$, i.e. $f(x)=bigcap_{ninmathbb N}left[frac{i_n}{2^n},frac{i_n+1}{2^n}right)$. Now, I would like to prove that $$bigcap_{ninmathbb N}left[frac{i_n}{2^n},frac{i_n+1}{2^n}right)={*},$$
is a singleton, but I can't.
measure-theory
$endgroup$
add a comment |
$begingroup$
Let $f:mathbb Rlongrightarrow mathbb R$ a funcion. I try to prove that $$text{Graph}(f)=bigcap_{ninmathbb N}bigcup_{iinmathbb Z}f^{-1}left(left[frac{i}{2^n},frac{i+1}{2^n}right)right)times left[frac{i}{2^n},frac{i+1}{2^n}right),$$
but I have difficulty to prove the $supset$ inclusion. So let $$(x,y)in bigcap_{ninmathbb N}bigcup_{iinmathbb Z}f^{-1}left(left[frac{i}{2^n},frac{i+1}{2^n}right)right)times left[frac{i}{2^n},frac{i+1}{2^n}right),$$
then, for all $n$, there is $i_n$ s.t. $(x,y)in f^{-1}left(left[frac{i_n}{2^n},frac{i_n+1}{2^n}right)right)times left[frac{i_n}{2^n},frac{i_n+1}{2^n}right)$. In particular, $f(x)in left[frac{i_n}{2^n},frac{i_n+1}{2^n}right)$ for all $n$, i.e. $f(x)=bigcap_{ninmathbb N}left[frac{i_n}{2^n},frac{i_n+1}{2^n}right)$. Now, I would like to prove that $$bigcap_{ninmathbb N}left[frac{i_n}{2^n},frac{i_n+1}{2^n}right)={*},$$
is a singleton, but I can't.
measure-theory
$endgroup$
Let $f:mathbb Rlongrightarrow mathbb R$ a funcion. I try to prove that $$text{Graph}(f)=bigcap_{ninmathbb N}bigcup_{iinmathbb Z}f^{-1}left(left[frac{i}{2^n},frac{i+1}{2^n}right)right)times left[frac{i}{2^n},frac{i+1}{2^n}right),$$
but I have difficulty to prove the $supset$ inclusion. So let $$(x,y)in bigcap_{ninmathbb N}bigcup_{iinmathbb Z}f^{-1}left(left[frac{i}{2^n},frac{i+1}{2^n}right)right)times left[frac{i}{2^n},frac{i+1}{2^n}right),$$
then, for all $n$, there is $i_n$ s.t. $(x,y)in f^{-1}left(left[frac{i_n}{2^n},frac{i_n+1}{2^n}right)right)times left[frac{i_n}{2^n},frac{i_n+1}{2^n}right)$. In particular, $f(x)in left[frac{i_n}{2^n},frac{i_n+1}{2^n}right)$ for all $n$, i.e. $f(x)=bigcap_{ninmathbb N}left[frac{i_n}{2^n},frac{i_n+1}{2^n}right)$. Now, I would like to prove that $$bigcap_{ninmathbb N}left[frac{i_n}{2^n},frac{i_n+1}{2^n}right)={*},$$
is a singleton, but I can't.
measure-theory
measure-theory
asked Dec 10 '18 at 22:23
NewMathNewMath
4059
4059
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
In one hand, $f(x)in bigcap_{ninmathbb N}I_n$. In the other hand, if $yin bigcap_{ninmathbb N}I_n$, then $|y-f(x)|leq frac{1}{2^n}to 0$ and thus $f(x)=y$. The claim follow.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3034576%2fprove-that-graph-f-bigcap-n-in-mathbb-n-bigcup-i-in-mathbb-zf-1-fra%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
In one hand, $f(x)in bigcap_{ninmathbb N}I_n$. In the other hand, if $yin bigcap_{ninmathbb N}I_n$, then $|y-f(x)|leq frac{1}{2^n}to 0$ and thus $f(x)=y$. The claim follow.
$endgroup$
add a comment |
$begingroup$
In one hand, $f(x)in bigcap_{ninmathbb N}I_n$. In the other hand, if $yin bigcap_{ninmathbb N}I_n$, then $|y-f(x)|leq frac{1}{2^n}to 0$ and thus $f(x)=y$. The claim follow.
$endgroup$
add a comment |
$begingroup$
In one hand, $f(x)in bigcap_{ninmathbb N}I_n$. In the other hand, if $yin bigcap_{ninmathbb N}I_n$, then $|y-f(x)|leq frac{1}{2^n}to 0$ and thus $f(x)=y$. The claim follow.
$endgroup$
In one hand, $f(x)in bigcap_{ninmathbb N}I_n$. In the other hand, if $yin bigcap_{ninmathbb N}I_n$, then $|y-f(x)|leq frac{1}{2^n}to 0$ and thus $f(x)=y$. The claim follow.
edited Dec 10 '18 at 22:51
answered Dec 10 '18 at 22:43
SurbSurb
37.7k94375
37.7k94375
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3034576%2fprove-that-graph-f-bigcap-n-in-mathbb-n-bigcup-i-in-mathbb-zf-1-fra%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown