Let $K$ be a field. Prove that every element in $K(x)backslash K$ is transcendental












0












$begingroup$



Let $K$ be a field. Prove that every element in $K(x)backslash K$ is transcendental
over $K$.




Is proof of the question above similar to that of the question below?












share|cite|improve this question











$endgroup$












  • $begingroup$
    Yes - let $F=K(x)$ and let $u=x$. Then it follows from the theorem.
    $endgroup$
    – ODF
    Dec 11 '18 at 0:12
















0












$begingroup$



Let $K$ be a field. Prove that every element in $K(x)backslash K$ is transcendental
over $K$.




Is proof of the question above similar to that of the question below?












share|cite|improve this question











$endgroup$












  • $begingroup$
    Yes - let $F=K(x)$ and let $u=x$. Then it follows from the theorem.
    $endgroup$
    – ODF
    Dec 11 '18 at 0:12














0












0








0





$begingroup$



Let $K$ be a field. Prove that every element in $K(x)backslash K$ is transcendental
over $K$.




Is proof of the question above similar to that of the question below?












share|cite|improve this question











$endgroup$





Let $K$ be a field. Prove that every element in $K(x)backslash K$ is transcendental
over $K$.




Is proof of the question above similar to that of the question below?









field-theory transcendental-numbers






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 10 '18 at 23:36







Leyla Alkan

















asked Dec 10 '18 at 23:29









Leyla AlkanLeyla Alkan

1,5751724




1,5751724












  • $begingroup$
    Yes - let $F=K(x)$ and let $u=x$. Then it follows from the theorem.
    $endgroup$
    – ODF
    Dec 11 '18 at 0:12


















  • $begingroup$
    Yes - let $F=K(x)$ and let $u=x$. Then it follows from the theorem.
    $endgroup$
    – ODF
    Dec 11 '18 at 0:12
















$begingroup$
Yes - let $F=K(x)$ and let $u=x$. Then it follows from the theorem.
$endgroup$
– ODF
Dec 11 '18 at 0:12




$begingroup$
Yes - let $F=K(x)$ and let $u=x$. Then it follows from the theorem.
$endgroup$
– ODF
Dec 11 '18 at 0:12










0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3034640%2flet-k-be-a-field-prove-that-every-element-in-kx-backslash-k-is-transcende%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3034640%2flet-k-be-a-field-prove-that-every-element-in-kx-backslash-k-is-transcende%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Ellipse (mathématiques)

Quarter-circle Tiles

Mont Emei